
Number IV, Volume V, December 2010

Grondžák: Distributed Hamiltonian path search algorithm 62

DISTRIBUTED HAMILTONIAN PATH SEARCH
ALGORITHM

DISTRIBUOVANÝ ALGORITMUS PRO HĽADANIE

HAMILTONOVSKEJ CESTY

Karol Grondžák1

Summary: Many practical problems of transportation can be transformed to the problem of
finding Hamiltonian path or circle. It was proven, that this problem is NP-complete
and thus can be very time-consuming for practical problem size. In this paper we
present a distributed algorithm to search for Hamiltonian path in a graph.

Key words: vehicle routing, Hamiltonian path, Message Passing Interface

Anotácia: Mnohé praktické problémy v doprave môžu byť transformované na problém
hľadania hamiltonovskej cesty alebo kružnice. Je dokázané, že tento problém je
NP-úplný, takže môže byť časovo náročný pre úlohy riešené v praxi. V tomto
príspevku prezentujeme distribuovaný algoritmus pre hľadanie hamiltonovských
ciest na grafoch.

Kľúčové slová: smerovanie vozidiel, hamiltonovská cesta, Message Passing Interface

1. INTRODUCTION

Hamiltonian path is well-known and often used concept of graph theory. Let us consider
undirected and unweighted graph),(EV=G , where V is a set of vertices (nodes) and E is set
of edges. Edge is a tuple },{ vu such that VvVu ∈∈ , . Hamiltonian path is a path in an
undirected graphG which visits each vertex exactly once. A Hamiltonian cycle (or
Hamiltonian circuit) is defined as a cycle in an undirected graph G which visits each vertex
exactly once and starting and final vertex are identical. Determining whether such paths and
cycles exist in graphs is the Hamiltonian path problem. It can be formulated as
decision-making combinatorial problem ([1]).

To define combinatorial algorithm, let us consider a discrete set X , a function
ℜ→XF : , and a set of feasible solutions S , where XS ⊆ . The feasible solution is defined

in terms of given constraints specific for a particular problem. Decision-making combinatorial
problem is the task to construct elements of set X and find (if possible) at least on element
x belonging to set S , i.e. SxXx ∈∧∈ . Common technique to search for solution is
backtracking algorithm ([1]).

1 Ing. Karol Grondžák, PhD., Univerzity of Žilina, Faculty of Management Science and Informatics, Department
of Informatics, Univerzitná 8215/1, 010 26 Žilina, Tel.: +421 41 5134173, Fax: +421 41 5134055,
E-mail: Karol.Grondzak@fri.uniza.sk

Number IV, Volume V, December 2010

Grondžák: Distributed Hamiltonian path search algorithm 63

2. DISTRIBUTED HAMILTONIAN PATH ALGORITHM DESIGN

As was mentioned above, backtracking algorithm is used to solve the problem of
finding Hamiltonian path. General backtracking algorithm can be formulated as follows. Let
us consider n sets:

nkeeeE k
m

kk
k k

KK ,1},,,,{ 21 == , (1)

where km is a number of elements of the set kE and k
ie is i-th element of the set kE .

Then the above mentioned set X is defined as Cartesian product of sets iEi ∀, :

nEEEX ×××= L21 , (2)

with cardinality ∏
=

=
n

i
imQ

1

. It is obvious that the set X consist of n -tuples:

() Qcxxx c
n

cc KK ,2,1,,, 21 = , (3)

such that i
c
i Ex ∈ . These n-tuples are constructed recursively extending the set of

)1(−n -tuples.
 The backtracking algorithm starts with an empty n -tuple. In the stage i the

)1(−i -tuple is extended using elements of the set iE . Newly obtained i -tuples are then

checked for feasibility and then expanded to)1(+i -tuples using elements from set 1+iE .

This process is actually a depth-first search of a search-tree. Nodes of the search tree at
i -th level consist of i -tuples. An example of the search-tree is in Fig. 1.

()

(1
1e) (1

2e) (1
1me) …

(2
1

1
1 ,ee) … (2

2
1
1 ,ee) (2

2
1
1 , mee)

(2
2

1
1 , mm ee)

… …
…

Level 0

Level 2

Level 1

Source: Author

Fig. 1 - Example of a search-tree

This general backtracking algorithm can be applied to search for Hamiltonian path. For

graph with n vertices, we are looking for a list of vertices),,(110 −nvvv K such that each tuple

1,2,1,},{ 1 −=∈− niEvv ii K and for ji vvji ≠≠ , . We start with list containing starting vertex.

Then this list is expanded by another vertex of graphG . The feasibility of this particular
solution is checked. If it is not feasible, another expansion is not performed and this solution
is discarded. The process of construction of search-tree can be time-consuming for deep trees.

Number IV, Volume V, December 2010

Grondžák: Distributed Hamiltonian path search algorithm 64

2.1 Parallel computer architectures
Since the beginning of computer era there were efforts to speed-up calculations

performed on computers. One approach is to increase performance of computer components,
e.g. frequency of CPU or main memory. This approach is limited by physical properties of
used materials. Another approach is to divide calculation into independent portions and
perform calculations in parallel.

Two main architectures are used in this approach, considering the organization of main
memory. If all the processors share main memory, we call this shared memory architecture.
Communication among processes running on different processors is performed using main
memory. For this architecture, OpenMP standard ([2]) was defined.

If the processors have separate main memory, we call this distributed memory
architecture. In this case communication among processes running on different processors
must be performed by exchanging messages. For this architecture, Message Passing Interface
(MPI) ([3]) was proposed by group of computer hardware producers.

2.2 Parallel Backtracking Algorithm
Analysis of backtracking algorithm reveals a possibility for speed-up. Nodes of

search-tree of the backtracking algorithm can be distributed among different CPUs and
searched in parallel. This approach is suitable for both shared memory and distributed
memory architectures ([4]). In general, it can be realized by master-worker paradigm. One
process (master) maintains the pool of tasks and distributes them among worker processes.
Worker processes ask master process for task and after processing it inform master about
results. General master-worker algorithm is shown in Fig. 2. This approach is fully applicable
to the problem of Hamiltonian path search.

 WHILE workers not finished
DO
 wait for a message from worker
 IF solution found
 notify all workers
 finish
 ELSE
 IF request for a job
 send job to worker
END

(a)

REPEAT
 ask for a job from master
 IF there is a job
 process assigned job
 IF solution found
 notify master
 UNTIL there is a job

(b)

Source: Author
Fig. 2 – Pseudo-code for master-worker paradigm algorithm

3. EXPERIMENT AND OBTAINED RESULTS

Algorithm proposed in previous parts was implemented on a cluster of 20 commodity
personal computers. Each computer was equipped with dual core processor Intel D 3.0GHz
and 1024MB of main memory; running Debian GNU/Linux operating system. Computers

Number IV, Volume V, December 2010

Grondžák: Distributed Hamiltonian path search algorithm 65

were connected using standard Ethernet 1GB/s infrastructure. Because of the distributed
memory architecture of used hardware, OpenMPI ([5]) was used as tool for communication
between processes. It is a freely available implementation of MPI specification for
GNU/Linux operating system.

The properties of proposed algorithm were studied on the following problem. Let us
consider rectangular area divided into regular mesh (Fig. 3). There are two special vertices –
Start and Stop. We are looking for a Hamiltonian path starting in vertex Start and ending in
vertex Stop. If Start and Stop vertices are identical, we are searching for Hamiltonian circle. It
can represent a problem of routing small vehicle performing maintenance of the area. Or it
can be a problem of routing the arm of some robot performing some tasks in vertices of graph
(e.g. drill hole in each position).

Start

Stop

L R
U

D

Source: Author

Fig. 3 – Topology of studied problem

Because of the regular nature of this problem, we can represent the solution in the form
of direction which should vehicle take from actual position. There are at most four possible
directions from a vertex – left (L), right (R), up (U) or down (D). Then for a problem of size
N (amount of nodes in one direction), the maximum possible number of combinations is:

1
max

2

4 −= NP . (4)

Many combinations are not feasible solution and can be pruned during the process of
solution construction. Backtracking algorithm starts with empty list and vehicle in starting
position. In first step vehicle can move to one of four directions, so at the first level of
search-tree we get four lists containing one direction (L, R, U or D). Next step would be to
expand this list by second move. It can be (theoretically) again one of four directions. This
will result in a 16 list of two directions. In each step we have to check some constrains:
• we can not step out of mesh
• we can not enter vertex, which has already been entered in previous steps
• we can not enter Stop vertex, if it is not last step (if this holds, we have found solution)

Number IV, Volume V, December 2010

Grondžák: Distributed Hamiltonian path search algorithm 66

These conditions allow us to prune non-feasible partial paths without having to
construct and evaluate whole combination.

Two different aspects of algorithm were studied. First was the performance of algorithm
with respect to the number of processors involved in calculation. When involving more
processors we expect the algorithm to be faster. Optimal achievable speed-up is linear (if we
do not consider some special cases). This can be achieved, when the problem is divided into
equal independent parts which can be processed by different processors in parallel. This
would be true, if all the sub-trees of search-tree were of the same depth. In reality the
search-tree is usually unbalanced (as showed our experiments). For a fixed number of
processors available it is reasonable to divide task into smaller parts. Then we can expect that
processors which will be assigned shallower sub-trees of search-tree will process larger
amount of tasks and processors which will be assigned deeper sub-trees will process less
tasks. This was the second aspect to study – the influence of number of tasks to the algorithm
performance.

Source: Author

Fig. 4 – Relative speed-up vs. number of processors involved in calculation

The results presented at Fig. 4. were obtained for the same configuration of the problem.

They differ by the level of search-tree, at which the tasks were distributed to worker
processes. For level value 1, there are four sub-trees, which can be distributed among at most
four processes (14). For level 5, there are 102445 = sub-trees to distribute and process by
worker processes. It can be seen, that as the level increases, the relative speed-up increases as

Number IV, Volume V, December 2010

Grondžák: Distributed Hamiltonian path search algorithm 67

well. It is also clearly seen, that the speed-up is nonlinear, due to fact, that search-tree is
highly unbalanced. It can be also seen, that the more processors is involved in calculation, the
faster it is. For convenience also optimal linear speed-up is shown (line Linear).

4. CONCLUSION

In this contribution we have presented a proposed distributed algorithm for Hamiltonian
path search. The performance of newly proposed algorithm was compared with serial
algorithm. We have demonstrated the fact, that search-tree for the studied problem is
unbalanced. The potential for speeding-up of Hamiltonian path search was demonstrated. To
optimally use the potential of distributed architecture, some technique of load balancing
should be applied.

REFERENCES

[1] KUČERA, L. Kombinatorické algoritmy. Praha: SNTL, 1989. 286 pp. ISBN 04-009-89.
[2] OpenMP [online]. c2010 [cit. 2010-11-19] Available from <http://openmp.org/wp/>
[3] MPI Documents [online]. c2010 [cit. 2010-11-19] Available from: <http://

www.mpi-forum.org/docs/docs.html>.
[4] WILKINSON, B., ALLEN, M. Parallel Programming. Upper Saddle River: Pearson

Education, 2005. 467pp. ISBN: 0-13-140563-2
[5] OpenMPI [online] c2010 [cit. 2010-11-19] Available from <http://www.open-mpi.org/>

