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DISTRIBUTED HAMILTONIAN PATH SEARCH 
ALGORITHM  

 
DISTRIBUOVANÝ ALGORITMUS PRO HĽADANIE 

HAMILTONOVSKEJ CESTY 
 

Karol Grondžák1 

Summary: Many practical problems of transportation can be transformed to the problem of 
finding Hamiltonian path or circle. It was proven, that this problem is NP-complete 
and thus can be very time-consuming for practical problem size. In this paper we 
present a distributed algorithm to search for Hamiltonian path in a graph. 
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Anotácia: Mnohé praktické problémy v doprave môžu byť transformované na problém 
hľadania hamiltonovskej cesty alebo kružnice. Je dokázané, že tento problém je 
NP-úplný, takže môže byť časovo náročný pre úlohy riešené v praxi. V tomto 
príspevku prezentujeme distribuovaný algoritmus pre hľadanie hamiltonovských 
ciest na grafoch. 

Kľúčové slová: smerovanie vozidiel, hamiltonovská cesta, Message Passing Interface 

1. INTRODUCTION 

Hamiltonian path is well-known and often used concept of graph theory. Let us consider 
undirected and unweighted graph ),( EV=G , where V is a set of vertices (nodes) and E is set 
of edges. Edge is a tuple },{ vu  such that VvVu ∈∈ , . Hamiltonian path is a path in an 
undirected graphG  which visits each vertex exactly once. A Hamiltonian cycle (or 
Hamiltonian circuit) is defined as a cycle in an undirected graph G  which visits each vertex 
exactly once and starting and final vertex are identical. Determining whether such paths and 
cycles exist in graphs is the Hamiltonian path problem. It can be formulated as 
decision-making combinatorial problem ([1]).  

To define combinatorial algorithm, let us consider a discrete set X , a function 
ℜ→XF : , and a set of feasible solutions S , where XS ⊆ . The feasible solution is defined 

in terms of given constraints specific for a particular problem. Decision-making combinatorial 
problem is the task to construct elements of set X  and find (if possible) at least on element 
x belonging to set S , i.e. SxXx ∈∧∈ . Common technique to search for solution is 
backtracking algorithm ([1]). 
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2. DISTRIBUTED HAMILTONIAN PATH ALGORITHM DESIGN 

As was mentioned above, backtracking algorithm is used to solve the problem of 
finding Hamiltonian path. General backtracking algorithm can be formulated as follows. Let 
us consider n sets: 
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where km  is a number of elements of the set kE  and k
ie is i-th element of the set kE . 

Then the above mentioned set X is defined as Cartesian product of sets iEi ∀, : 
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. It is obvious that the set X  consist of n -tuples: 
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such that i
c
i Ex ∈ . These n-tuples are constructed recursively extending the set of 

)1( −n -tuples.  
 The backtracking algorithm starts with an empty n -tuple. In the stage i  the 

)1( −i -tuple is extended using elements of the set iE . Newly obtained i -tuples are then 

checked for feasibility and then expanded to )1( +i -tuples using elements from set 1+iE . 

This process is actually a depth-first search of a search-tree. Nodes of the search tree at 
i -th level consist of i -tuples. An example of the search-tree is in Fig. 1. 
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Source: Author 

Fig. 1 - Example of a search-tree 

 
This general backtracking algorithm can be applied to search for Hamiltonian path. For 

graph with n vertices, we are looking for a list of vertices ),,( 110 −nvvv K such that each tuple 

1,2,1,},{ 1 −=∈− niEvv ii K and for ji vvji ≠≠ , . We start with list containing starting vertex. 

Then this list is expanded by another vertex of graphG . The feasibility of this particular 
solution is checked. If it is not feasible, another expansion is not performed and this solution 
is discarded. The process of construction of search-tree can be time-consuming for deep trees.  
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2.1 Parallel computer architectures  
Since the beginning of computer era there were efforts to speed-up calculations 

performed on computers. One approach is to increase performance of computer components, 
e.g. frequency of CPU or main memory. This approach is limited by physical properties of 
used materials. Another approach is to divide calculation into independent portions and 
perform calculations in parallel. 

Two main architectures are used in this approach, considering the organization of main 
memory. If all the processors share main memory, we call this shared memory architecture. 
Communication among processes running on different processors is performed using main 
memory. For this architecture, OpenMP standard ([2]) was defined. 

If the processors have separate main memory, we call this distributed memory 
architecture. In this case communication among processes running on different processors 
must be performed by exchanging messages. For this architecture, Message Passing Interface 
(MPI) ([3]) was proposed by group of computer hardware producers. 

2.2 Parallel Backtracking Algorithm 
Analysis of backtracking algorithm reveals a possibility for speed-up. Nodes of 

search-tree of the backtracking algorithm can be distributed among different CPUs and 
searched in parallel. This approach is suitable for both shared memory and distributed 
memory architectures ([4]). In general, it can be realized by master-worker paradigm. One 
process (master) maintains the pool of tasks and distributes them among worker processes. 
Worker processes ask master process for task and after processing it inform master about 
results. General master-worker algorithm is shown in Fig. 2. This approach is fully applicable 
to the problem of Hamiltonian path search. 

 WHILE workers not finished 
DO 
  wait for a message from worker 
  IF solution found 
    notify all workers 
    finish 
  ELSE 
  IF request for a job 
    send job to worker  
END 
 

(a) 

REPEAT 
  ask for a job from master 
  IF there is a job 
    process assigned job 
    IF solution found 
      notify master 
 UNTIL there is a job 
 
 
 
 

(b) 
 

Source: Author 
Fig. 2 – Pseudo-code for master-worker paradigm algorithm 

3. EXPERIMENT AND OBTAINED RESULTS 

Algorithm proposed in previous parts was implemented on a cluster of 20 commodity 
personal computers. Each computer was equipped with dual core processor Intel D 3.0GHz 
and 1024MB of main memory; running Debian GNU/Linux operating system. Computers 
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were connected using standard Ethernet 1GB/s infrastructure. Because of the distributed 
memory architecture of used hardware, OpenMPI ([5]) was used as tool for communication 
between processes. It is a freely available implementation of MPI specification for 
GNU/Linux operating system. 

The properties of proposed algorithm were studied on the following problem. Let us 
consider rectangular area divided into regular mesh (Fig. 3). There are two special vertices – 
Start and Stop. We are looking for a Hamiltonian path starting in vertex Start and ending in 
vertex Stop. If Start and Stop vertices are identical, we are searching for Hamiltonian circle. It 
can represent a problem of routing small vehicle performing maintenance of the area. Or it 
can be a problem of routing the arm of some robot performing some tasks in vertices of graph 
(e.g. drill hole in each position). 

 

Start 

Stop 

L R
U
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Source: Author 

Fig. 3 – Topology of studied problem 

Because of the regular nature of this problem, we can represent the solution in the form 
of direction which should vehicle take from actual position. There are at most four possible 
directions from a vertex – left (L), right (R), up (U) or down (D). Then for a problem of size 
N (amount of nodes in one direction), the maximum possible number of combinations is: 

1
max

2

4 −= NP . (4) 

Many combinations are not feasible solution and can be pruned during the process of 
solution construction. Backtracking algorithm starts with empty list and vehicle in starting 
position. In first step vehicle can move to one of four directions, so at the first level of 
search-tree we get four lists containing one direction (L, R, U or D). Next step would be to 
expand this list by second move. It can be (theoretically) again one of four directions. This 
will result in a 16 list of two directions. In each step we have to check some constrains: 
• we can not step out of mesh 
• we can not enter vertex, which has already been entered in previous steps 
• we can not enter Stop vertex, if it is not last step (if this holds, we have found solution) 

 



Number IV, Volume V, December 2010 
 

Grondžák: Distributed Hamiltonian path search algorithm 66   

These conditions allow us to prune non-feasible partial paths without having to 
construct and evaluate whole combination. 

Two different aspects of algorithm were studied. First was the performance of algorithm 
with respect to the number of processors involved in calculation. When involving more 
processors we expect the algorithm to be faster. Optimal achievable speed-up is linear (if we 
do not consider some special cases). This can be achieved, when the problem is divided into 
equal independent parts which can be processed by different processors in parallel. This 
would be true, if all the sub-trees of search-tree were of the same depth. In reality the 
search-tree is usually unbalanced (as showed our experiments). For a fixed number of 
processors available it is reasonable to divide task into smaller parts. Then we can expect that 
processors which will be assigned shallower sub-trees of search-tree will process larger 
amount of tasks and processors which will be assigned deeper sub-trees will process less 
tasks. This was the second aspect to study – the influence of number of tasks to the algorithm 
performance. 

 
Source: Author 

Fig. 4 – Relative speed-up vs. number of processors involved in calculation 

 
The results presented at Fig. 4. were obtained for the same configuration of the problem. 

They differ by the level of search-tree, at which the tasks were distributed to worker 
processes. For level value 1, there are four sub-trees, which can be distributed among at most 
four processes ( 14 ). For level 5, there are 102445 = sub-trees to distribute and process by 
worker processes. It can be seen, that as the level increases, the relative speed-up increases as 
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well. It is also clearly seen, that the speed-up is nonlinear, due to fact, that search-tree is 
highly unbalanced. It can be also seen, that the more processors is involved in calculation, the 
faster it is. For convenience also optimal linear speed-up is shown (line Linear). 

4. CONCLUSION 

In this contribution we have presented a proposed distributed algorithm for Hamiltonian 
path search. The performance of newly proposed algorithm was compared with serial 
algorithm. We have demonstrated the fact, that search-tree for the studied problem is 
unbalanced. The potential for speeding-up of Hamiltonian path search was demonstrated. To 
optimally use the potential of distributed architecture, some technique of load balancing 
should be applied. 
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