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MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR 
INTEGRATED TIMETABLE OPTIMIZATION WITH 

VEHICLE SCHEDULING ASPECTS 

Michal Weiszer1, Gabriel Fedorko2, Zdenek Čujan3 

Summary:This paper describes the implementation of evolutionary multiobjective genetic 
algorithm (NSGA-II) to integrate timetabling and vehicle scheduling stages of the 
transportation planning proces. Model with timetable optimization focused on 
minimizing the transfer time of the passengers in transfer node along with 
minimizing the number of vehicles needed to operate such timetable is presented.  
Results from simple test case illustrate the effectiveness of a such  approach. 
Developed solution is able to optimize conflicting objectives of passengers and 
transportation company simultaneously. 
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1. INTRODUCTION 

The planning process of public transport service usually consists of 4 major parts:  
network design (routing), timetabling, vehicle scheduling, crew scheduling and rostering. 

Due to the size and complexity of the whole process, these planning stages are typically 
carried out in a sequence, where previous step serves as an input to the next step. However, 
since each planning step has influence on the other, simultaneous approach is desirable, that 
the public transport planning problem could be treated with respect to global optimality. As 
the most of real world problems, also transport planning is multiobjective problem with 
different and often conflicting objectives. On the one side, there is the passengers view 
(transport service quality mainly determined by network design and timetabling) and on the 
other side is the view of the transport company (mainly financial criteria involved in vehicle 
and crew scheduling). Advances in transportation research in the recent years along with 
information technology make integration of some planning stages possible. Some effort in 
this direction has been done, examples are the Periodic Event Scheduling problem for railway 
with partial integration of other planning aspects in [1] and an approach using iterated local 
search in [2].  

The objective of this paper is not only to propose integrated planning approach but also 
to incorporate a multiobjective evolutionary search into model. Rest of this paper is organized 
as follows: in next section, basic theory on multiobjective optimization and dedicated genetic 
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algorithm NSGA-II is presented. Thereafter, a simple test case illustrates the implementation 
of the multiobjective algorithm. Last section examines the numerical results of the test case. 

2. EVOLUTIONARY ALGORITHMS AND MULTIOBJECTIVE 
OPTIMIZATION 

2.1 Introduction to evolutionary multiobjective optimization 
Evolutionary algorithms (EA) are broad category of optimization algorithms (Genetic 

algorithm and differential evolution for example). EA use a population based search in which 
new population of solutions is evolved in each generation. EA are popular optimization 
technique used in wide range of applications. Traditional evolutionary algorithms are single-
objective in which the fittest individual (with highest objective function value) represents the 
single suboptimal solution. The fact that EA works with multiple solutions at time makes it 
very suitable for multiobjective optimization. 

 Let assume number of K objectives, which have to be minimized. Given a solution 
nRx∈ , it is a vector of n decision variables: x = {x1 , x2 , ... , xn}  in the solution space X. The 

objective is to find a vector x* that minimizes a given set of K objective functions 
{ })(,),()( **

1
* xfxfxf KK= . The solution space X is generally restricted by a series of 

constraints and bounds on the decision variables. Since optimization of x with respect to just 
one objective can often lead to worse results in other objectives, simultaneous approach is 
needed and single solution to multiobjective problem often doesn't exist at all.  Therefore the 
aim of multiobjective optimization is to find a set of solutions each of which minimizes the K 
objective functions at an acceptable level and it is not dominated by any solution. 

A solution x1 is said to dominate the other solution x2 , if: 
1. The solution x1 is no worse than x2 in all objectives. Thus, the solutions are compared 

based on their objective function values, and 
2.The solution x1 is strictly better than x2 in at least one objective. 
 
Solution, that is not dominated by any other solution in solution space is called Pareto-

optimal. A Pareto-optimal solution can not be improved in any objective without worsening in 
at least one other objective. The all non-dominated solutions in solution space X constitute the 
Pareto optimal set. The corresponding objective functions values of the Pareto-optimal set in 
the objective space form a Pareto front. Fig. 1 illustrates the Pareto front in objective space for 
two objective functions f1, f2. The Pareto front is highlighted. For example, in Fig. 1 solution i 
is dominated by solutions c, d and e. Solutions f, g and h  are dominated by only a single 
solution (a, b, b). 

Several evolutionary algorithms for multiobjective optimization have been proposed. 
Review of existing algorithms can be found in [3] and [4]. One of them is well tested and 
computationally efficient Fast Non-dominated Sorting Genetic Algorithm NSGA-II by 
Deb [5]. 
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Source: Authors 

Fig. 1 – Pareto front in objective space 
 

2.2 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) 
NSGA-II uses dominance ranking and crowding distance evaluation for an individual 

instead of objective function value. Crowding distance promotes search of solutions 
uniformly spread along the Pareto front. The crowding distance is used in following manner 
(Fig. 2): 

Step 1: The population is ranked by dominance rule and non-dominated fronts F1, 
F2,...,FR are identified.  For each front Fj, j = 1, …, R repeat Steps 2 and 3. 

Step 2: The solutions in front Fj  are sorted in ascending order. The sorting is repeated 
for each objective function f. Let jFl =  and xi,k represent the i-th solution in the sorted list 

with respect to the objective function fk.. Assign cdk(x1,k) = ∞ and cdk(xl,k) = ∞, and then assign 
for i = 2, …, l-1 : 

minmax
,1,1

,

)()(
)(
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kikkik
kik ff

xfxf
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−

−
= −+  

 
Where minmax , kk ff  are the maximum resp. minimum value of objective function fk so far. 

Step 3: To compute the total crowding distance cd(x) of a solution x, the solution’s 
crowding distances with respect to each objective are summed, ∑=

k
k xcdxcd )()( . 

This crowding distance measure is used  in  crowded tournament selection operator. 
That is, between two solutions with differing nondomination ranks, we prefer the solution 
with the lower (better) rank. Otherwise, if both solutions belong to the same front, then we 
prefer the solution that has higher crowding distance. A solution with a higher value of this 
distance measure is less crowded by other solutions [5]. The complete algorithm is described 
in detail in [5]. 
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Source: [4] 

Fig. 2 – Crowding distance calculation 
 

3. TEST CASE 

There are 4 lines given (Fig. 3), with transfer node T. Some routes run in parallel 
between specific nodes. Each line consists of pair of routes, one route in forward direction 
and one in opposite direction. Headways for lines are given as follows: 12 minutes for line 1 
and line 2, 10 minutes for line 3 and line 4. The objective is to determine timetable τ for node 
T for each route within the time period of 60 minutes that transfer time of passengers and 
number of vehicles needed to operate the timetable are minimized. Timetable τ consists of 
timetables for 8 routes (4 lines * 2), where each timetable for route i consists of n arrivals in 
node T within the time period. The term hi is the headway for route i: 

 
τ = {T1, T2, ..., Ti}, i = 8  

Ti = {ti1, ti2, ..., tin} n = 60/hi, i = 1,..,8 
 

Hence timetables are cyclic with constant headways, the timetable for route i can be 
determined from first arrival, using integer multiples of headway. This way the number of 
decision variables can be downsized significantly. 

 
Ti = {ti1, ti1+hi, ti1+2hi ..., ti1+(n-1)hi } , ti1 < hi 

 
The representation of a solution for the EA (the individual) has 4 genes representing the 

arrivals t11, t21, t51, t61. Due to the overlaping routes, these are synchronized and the arrivals 
for the rest of the lines are determined as follows: 

tj = (ti+ 2
ih

) mod hi i=1,2,5,6 , j=3,4,7,8 
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Source: Authors 

Fig. 3 – Test case 
 

3.1 Transfer time of passengers 
First objective function f1 that gives the tranfer time of passengers can be constructed as 

follows: 
Minimize ∑∑∑∑ −=

i j k l

ij
kljlikij cttf )(1 α  

Subject to: 
1)( ≥− jlik tt    1,,,, =∀ ijlkji α  (1) 

1,0∈ijα    ji,∀    (2) 
+∈Ztt jlik ,    lkji ,,,∀   (3) 

)60,0, ∈jlik tt   lkji ,,,∀   (4) 

 
Where the transfer time is a difference between the arrival of k-th bus/tram of i-th route 

and the arrival of l-th bus/tram of j-th route, multiplied by number of transfering passengers   
ij
klc  and summed over all buses/trams of all routes . The term αij can be either 0 or 1 according 

to the possibility of transfer between routes i and j.  Constraint (1) ensures that transfer time is 
greater or equal than 1 minute, constraint (2) states that αij can take binary values and 
constraint (3) ensures that the arrivals  have integer values. The constraint (4) ensures that the 
arrivals are within the time period of 60 minutes. 

3.2 Number of vehicles 
On a single traffic line (Fig. 4) between terminal A and terminal B (with route i and i+1 

for opposite direction), if we assume that no interlining for vehicles is allowed, minimum 
number of vehicles N to serve this line is exactly:  
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Where lXA, lAX, lBX, lXB is travel time between corresponding nodes, A
iir 1, + , B

iir 1, +  is the 

difference between the arrival tA
i, resp. tB

i+1 and departure tA
i+1, resp. tB

i from terminal. tX
i, tX

i+1 
is the arrival in node X. 

 
Source: Authors 

Fig. 4 – Single traffic line 
 
Due to the periodic property of the timetable, the arrival tA

i and departure tA
i+1 can be 

determined: 
tA

i = (tX i + lXA) mod hi 
tA

i+1 = (tX
i+1 - lAX) mod hi 

 
Note that modulo operator gives always positive remainder. Next, difference rA

i,i+1 
equals: 

rA
i,i+1  = (tA

i+1 – tA
i) mod hi = (tX

i+1 – tX
i - lXA – lAX) mod hi 

 
The difference is a sum of minimum turnover time of the vehicle and the idle waiting 

time. When altering the timetable (the arrivals) only this idle waiting times are affected. The 
corresponding travel times between tranfer node and terminals with minimum turn over times 
included for presented test case are depicted in (Fig. 3). 

Finally, the second objective function f2 is the summary of NL vehicles for all L = 1,..,4 
lines: 

minimize f2 = N1+N2+N3+N4. 

4. RESULTS 

Assume that majority of transferring passengers travel between node A and H, therefore 
only transfer between lines 1,2 to lines 3,4 is desirable and only transfer time between these 
lines is measured. Library with NSGA-II  implementation in Python language [6] was used. 
The parameters of algorithm are following, population size is 100 and maximum generations 
are 80. The experiment was carried out on Athlon Dual Core processor X2 4600+ with 2GB 
of memory and it took 22 seconds. Within the specified number of generations, solutions in 
Tab 1. were found. 
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Tab. 1 – Solutions found with NSGA-II 
Solution {t11, t21, t51, t61} f1 (min.) f2 (vehicles) 

7, 6, 5, 4 60 21 
8, 6, 6, 4 60 21 
8, 7, 5, 2 64 20 
7, 6, 5, 2 64 20 
5, 4, 6, 3 64 20 
4, 3, 5, 2 64 20 
8, 7, 6, 3 64 20 
3, 2, 5, 2 64 20 
4, 3, 6, 3 64 20 
9, 8, 6, 3 64 20 

Source: Authors 
 
Found solutions can be classified into two groups with equivalent solutions according to 

objective functions values. In one group solutions achieved minimum transfer time f1 = 60 
minutes. In the other group solutions have worse transfer time but achieved minimum number 
of vehicles f2 = 20. In this case, the Pareto-optimal set consists of only two solutions which 
form the Pareto front (Fig. 5). 

For illustration the best solutions found using traditional genetic algorithm (GA) with 
single objective function are in Tab. 2. In the first row, solution of GA with f1 objective 
function after specified number of generations is presented. Solution of GA with f2 objective 
function is in the second row. It is clear that solutions are optimal only in respect to single 
objective. 

 

 
Source: Authors 

Fig. 5 – Pareto front for test case 
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Tab. 2 - Solutions found with GA 
Solution {t11, t21, t51, t61} f1 (min.) f2 (vehicles) 

10,6,8,9 60 22 
11,8,1,8 66 20 

Source: Authors 
 

5. CONCLUSION 

The public transport planning process is complex and difficult and it is processed 
usually in a sequence.  However, research in the recent years have made integration of some 
stages possible. In this paper, integration of timetable optimization with vehicle scheduling 
aspects is presented. In addition, the optimization is carried out in multiobjective and 
evolutionary manner. This way the conflicting objectives of passengers and transportation 
company can be optimized simultaneously. Therefore the decision maker can investigate 
various scenarios and make a trade-off. 
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