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POSSIBILITY OF SMART CAR SPEED CONTROL USING 
SOFT COMPUTING 

Petr Doležel1 Ivan Taufer2 

Summary: Smart speed control of a car is the focus of the paper. There is introduced the 
possibility how to automatically control the car speed smoothly in the daily traffic. 
The technique uses nonlinear neural car model together with differential evolution 
search technique to determine continuously convenient throttle power so that the car 
speed is optimal with respect to defined cost function – the cost function can 
consider actual speed limits as well as speed smoothness. 
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PREFACE 

These days, a car is developing to operate more and more automatically. It collects 
many new achievements of academic subjects such as automatic control, sensor technologies, 
artificial intelligence, image processing etc. One of potential car improvements is the 
possibility of smart car speed control. The classical cruise control (sometimes known as 
autocruise) developed by Frank J. Riley (1) can be replaced by more sophisticated control 
system respecting full car dynamics including driving position engaged as well as actual 
speed limit. The method is fully described in next sections. 

1. CAR MODEL 

Instead of real car, smart car speed control is simulated here on using model with 
automatic transmission. This model is considered as single input-single output (SISO) plant 
with throttle pedal press as input and speed as output. 

Matlab-Simulink full car model is chosen for control simulation. This model serves as 
SimDriveline library features demonstration and it includes engine and transmission models 
and a simplified model of the drivetrain-wheel-road coupling. Simulink scheme of the model 
is depicted in Fig. 1.  

The model is improved on automatic transmission working this way: lower gear is 
engaged in case of less than 2000 engine revolutions per minute (rpm) and higher gear is 
engaged in case of more than 4000 rpm. Brakes usage is not considered in case of smooth 
drive – see Fig. 2 
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Source: Matlab 

Fig. 1 - Full car model 
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Fig. 2 - Car model for simulations 
 

2. CONTROL METHOD 

If advanced automatic control is required, it is always necessary to design suitable 
controlled plant model. One possibility is to use artificial neural network, because it 
represents effective tool for even highly nonlinear plants modelling. However, possibilities of 
neural model usage in process control are limited because control techniques in use cannot 
employ neural models. 

On the other hand, the most classical and trustworthy control techniques are based on 
PID controllers, which are the widest spread controllers in industry (more than 95% of the 
control loops are PID type – see (2)). PID controllers are to be tuned to operate properly and 
there are many techniques to tune them, either theoretically based or experimental ones. 
However, all of them suppose linear controlled system. The method explained here aims to 
tune any discrete controller online (not only PID like). It expects knowledge of controlled 
system model (it shall use the neural model) and reference variable course over known future 
finite horizon. The method amplifies the basic feedback control loop connection illustrated in 
Fig. 3. Its structure is illustrated in Fig. 4, where w(k), u(k), y(k) are reference variable, 
manipulated variable and controlled variable, respectively. 
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Fig. 3 – Feedback control loop 
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Fig. 4 – Feedback control loop with self-tuning discrete controller 
 
So the premise is an availability of controlled system neural model and knowledge of 

reference variable course over future horizon N. Then there are chosen the parameters of any 
discrete controller repeatedly every discrete time instant so that the control response 
computed via the neural model over future horizon is optimal (according to chosen 
performance criterion). 

 

2.1 Search algorithm 
It is clear that the crucial problem is to choose a search algorithm. The search of discrete 

controller parameters has to run repeatedly in every single step of sampling interval, which 
lays great demands on computing time of the search algorithm. Naturally, usage of some 
iterative optimization algorithm with only one (or several) iteration realization every time 
instant is suggested. Gradient descent techniques seem inconvenient because of neural model 
usage. Neural model is black-box-like model so it is generally not possible to determine 
gradient descent analytically. On the other hand, evolutionary search techniques (genetic 
algorithm – see (3), (4), differential evolution – see (5), (6), etc.) appear to be suitable because 
these techniques do not require any particular information about search problem. The other 
indisputable advantage is its operating principle. In each iteration, evolutionary search 
techniques explore not only one value of input variables but whole set of them (one 
generation of individual solutions), which lowers significantly troubles with initial parameters 
random choice. 
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For this particular case, differential evolution is chosen. The reasons are, among others, 
that differential evolution is computationally rather less demanding algorithm, it works with 
decimal input values (contrary to genetic algorithm) and population of possible solutions is 
kept more diversified – see (6). Last but not least, differential evolution is chosen because of 
authors’ recent validating experiments (7). 

 

2.2 Controller type 
The control method, which is described here, does not require any special form of 

discrete controller. After some experiments (8), (9), controller form 

)1()2()1()()()( 3210  kukypkypkypkwpku  (1) 

is considered to be convenient. For some p0 …  p3 parameters combinations, controller (1) 
acts like discrete PID controller (10). In general, however, it has one additional independent 
parameter. There can be obtained really suitable control performances by well-tuned 
controller (1). 
 

2.3 Control method summary 
Whole algorithm of described control method is compiled in following points: 

1. Create dynamical neural model of controlled system – see (11) 
2. Choose future horizon length N 
3. Choose differential evolution parameters (number of individual solutions in one 

generation NP – any solution represents one particular quaternion of controller parameters 
p0 …  p3, crossover constant CR, mutation constant F) and their initial values 

4. Measure controlled variable y(k) 
5. Perform one iteration of differential evolution (based on the knowledge of controlled 

variable y(k), course of its reference w(k) till w(k+N-1) and neural model of controlled 
system) 
a) perform control simulation with discrete controller and the neural model over future 

horizon N and evaluate cost function for all the individual solutions from current 
generation 

b) Apply cross-over and mutation (see (2)) so that offspring generation of solutions is 
bred 

c) Evaluate cost functions of offspring (see step a))  
d) Choose the best individual solution from the offspring generation 

6. Evaluate manipulated variable u(k) with discrete controller determined by the best 
individual solution obtained in step 5d)  

7. k = k +1, go to step 4 
 
Future horizon length N is important parameter of the whole algorithm. There are no 

exact rules how to choose it. Too short horizon does not provide sufficient data to differential 
evolution. However, too long one brings data so distant from the current state that this data 
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should not influence the next controller output value. It has to be mentioned that tall future 
horizon length causes prolonged computing time (computing time is one of key troubles). 

Suitable definition of cost function is 
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where )1()()(  iuiuiu , e(i) is control error, h1 is function parameter influencing 

manipulated variable differences, h2 is function parameter influencing the state on the end of 
future horizon, N is future horizon length and w(i) is reference variable. 

Eventually, most of real controlled systems inputs and states are constrained. It is useful 
to include that limitation to control simulation (step 5a)) in order to influence discrete 
controller parameters search. 

 

3. SMART CAR SPEED CONTROL 

According to the paragraph 2, it is necessary to get the plant model. Thus, discrete 
neural model (sampling period 1s) is designed. 

First, full car model (paragraph 1) is used for training set data acquisition – see Fig. 5. 
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Fig. 5 – Training set for neural model 
 
Then, artificial neural network is designed (topologically redundant neural network is 

trained offline by Levenberg-Marquardt training algorithm repeatedly while pruning is 
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applied). Final neural network topology is 3 inputs, 10 neurons with sigmoid transfer 
functions in hidden layer and 2 output neurons with linear transfer functions. Comprehensive 
dynamical neural model design procedure can be found e.g. in (11). Compact discrete neural 
model of the plant is shown in Fig. 6, while fragment of its verification for defined input 
course is depicted in Fig. 7. 
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Fig. 6 – Neural model 
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Fig. 7 – Fragment of neural model verification 
 
Then, control loop (see Fig. 4) can be put together. Eligible parameters are chosen after 

some experiments partially according to (6): 
 
Number of solutions NP = 1000 
Crossover constant CR = 0.85 
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Mutation constant F = 0.6 
Horizon length N = 9 
Differential evolution iterations every time instant: 2 
 
Reference variable course is determined as step function with magnitudes 50 kmph, 90 

kmph and 130 kmph, since those are the speed limits for road vehicles in the Czech Republic. 
For real cars, reference variable can be obtained e.g. from car navigation system during route 
planning. Cost function is defined by the equation (2) where h1 = 20, h2 = 0.5. Control 
performance is plotted in Fig. 8. 

 
Source: Author 

Fig. 8 – Control performance 1 
 
Control performance in Fig. 8 is similar to control performance to be obtained by any of 

model predictive control techniques (10). The controller attempts to minimize the criterion 
(2), however the final performance is influenced by the eligible parameters values, indeed. 

That control performance cannot be used practically. If the reference variable is defined 
by the speed limits, it is not suitable for actual speed to exceed that reference. However, cost 
function for differential evolution can be defined freely, it is decent advantage. Thus, cost 
function (2) is modified so that negative control error (desired speed lower than actual speed) 
is included in the criterion with tenfold heavier weight than positive control error. The 
purpose is clear – it is necessary to penalize those control performances, where actual car 
speed exceeds speed limit. 

Control performance with cost function modified in this way is depicted in Fig. 9. The 
only parameter, which value is changed, is horizon length N. In this case N = 15. 



Number 2, Volume VII, July 2012 
 

Doležel, Taufer: Possibility of smart Car speed control using Soft Computing 13   

It is obvious, that desired speed is conveniently followed by actual speed, but speed 
limits (identical to desired car speed) are not exceeded. 

 
Source: Author 

Fig. 9 – Control performance 2 
 

 CONCLUSION 

The paper is focused on smart car speed control. It introduces sophisticated control 
technique based on online optimization of control action using differential evolution and 
dynamic neural model of the car. Control technique allows shaping speed course as necessary 
and control simulations show some decent features of the technique. 

However, it is clear that online optimization using differential evolution can be hardly 
used in real traffic. Still, the possibility is to use this technique to determine huge sets of 
tested control action courses sorted to lookup-table since those sets can offer optimal control 
action according to actual car state. This approach can guarantee stability and safety of the 
control and it will be tested on laboratory models in near future. 
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