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OF E2/E2/1/m QUEUEING SYSTEM SUBJECT TO OPERATE-
DEPENDENT SERVER BREAKDOWNS 

Michal Dorda1 

Summary: The paper deals with modelling of a finite single-server queueing system with  
a server subject to breakdowns. Customers interarrival times and customers service 
times follow the Erlang distribution defined by the shape parameter k=2 and the 
scale parameter 2λ or 2μ respectively. We consider that server failures can occur 
when the server is busy (so called operate-dependent failures). Further we assume 
that service of a customer is interrupted by the occurrence of the server failure (the 
preemptive-repeat discipline. We assume that random variables relevant to server 
failures and repairs are exponentially distributed. The queueing system is modelled 
using method of stages. We present a state transition diagram, a system of linear 
equations describing the system behaviour in the steady-state and formulas for 
several performance measures computation. To validate the mathematical model  
a simulation model was created using simulation software Witness. At the end of the 
paper some graphical dependencies are shown. 
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INTRODUCTION 

Queueing systems represent a lot of practical systems we can find in technical practice, 
such as manufacturing, computer and telecommunication or transport systems. As we can see 
in many books devoted to the queueing theory, such as the books (1) or (2), in most common 
queueing models we often neglect the fact that a server is subject to failures. However in 
technical practice we often must not forget this fact because server failures can adversely 
affect performance measures of a studied queueing system. Therefore we are obliged to model 
the system as the unreliable queueing system in which the server is successively failure-free 
and broken. 

We can mention two examples of queuing systems subject to server breakdowns in the 
field of transport. Let us consider a portal crane which loads/unloads containers on/from 
wagons in a container terminal. It is clear that the crane, which is the server in this case, can 
be broken from time to time. Or the second case that could be mentioned, authors of the paper 
(3) modelled a container unloader as a finite single-server queue with repairable server. 

In the paper a modification of a queueing system which was presented in paper (4) is 
shown. 

1. GENERAL ASSUMPTIONS AND NOTATION 

Let us study a single server queueing system with a finite capacity equal to m, where 
m>1, that means there are in total m places for customers in the system – single place in the 
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service and m-1 places intended for waiting of customers. Let us consider that customers are 
served one by one according to the FCFS service discipline. 

Customers interarrival times follow the Erlang distribution with the shape parameter 

k=2 and the scale parameter 2λ; therefore the mean interarrival time is then equal to 

1

2

2
 . 

Costumer service times are an Erlang random variable with the shape parameter k=2 as well, 

but with the scale parameter 2μ; thus the mean service time is equal to 

1

2

2
 .  

Let us assume that the server is successively failure-free (or available we can say) and 
broken. We assume that failures of the server can occur when the server is busy – we say that 
server failures are operate-dependent. Let us assume that times of overall server working until 
the breakdown occurrence are an exponential random variable with the parameter η; the mean 
time of overall server working until the breakdown occurrence is then equal to the reciprocal 
value of the parameter η. Times to repair are an exponential random variable as well, but with 

the parameter ξ; the mean time to repair is therefore equal to 

1

. 

As regards behaviour of customers at the moment of the failure, we will consider that 
the performed service of the customer under service is lost, the customer leaves the server and 
comes back to the queue if it is possible; otherwise it leaves the system and is rejected. We 
can call this discipline as preemptive-repeat. 

To model our queueing system we can employ method of stages. The method exploits 
the fact that the Erlang distribution with the shape parameter k and the scale parameter 
denoted as kλ or kμ is sum of k independent exponential distribution with the same parameter 
kλ or kμ. Therefore the queueing system can be modelled using Markov chains. 

2. MATHEMATICAL MODEL OF THE QUEUEING SYSTEM 

States of the system can be divided into two groups: 

 The failure-free states are denoted by the notation k,v,o, where: 

o k represents the number of customers finding in the system, where  mk ,...,1,0 , 

o v represents the terminated phase of customer arrival, where  1,0v , 

o o represents the terminated phase of customer service, where  1,0o . 

 The states in which the server is broken are denoted by the notation Pk,v, where: 
o the letter P expresses failure of the server, 
o k represents the number of customers finding in the system, where 

 1,...,1,0  mk , 

o v represents the terminated phase of customer arrival, where  1,0v . 

Let us illustrate a state transition diagram; the diagram is shown in Fig. 1. Vertices 
represent individual system states and oriented edges indicate possible transitions with the 
corresponding rate. 
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Source: Author 

Fig. 1 – The state transition diagram of the queueing model 
 

The finite system of linear equations describing the behaviour of the system in the 
steady-state is: 

 1,0,10,0,0 22 PP   ,  (1) 

 1,1,10,0,00,1,0 222 PPP   ,  (2) 

   0,0,11,0,1 222 PP   ,  (3) 

   0,1,1,0,1,1, 2222 kkk PPP    for mk ,...,2,1 , (4) 

   0,1,0,10,1,10,0, 2222 Pkkkk PPPP     for 1,...,2,1  mk , (5) 

   1,1,1,10,0,0,1, 2222 Pkkkk PPPP     for 1,...,2,1  mk , (6) 

   0,0,1,1,11,0, 2222 kkk PPP     for 1,...,3,2  mk , (7) 

   0,0,1,1,1,1,11,0, 22222 mmmm PPPP    , (8) 

   0,1,0,1,10,0, 2222 mmm PPP    , (9) 

   0,0,0,1, 222 mm PP   ,  (10) 

   0,0,11,0,10,12 PPPP   ,  (11)  

   0,0,1,1,1,1, 22 PkkkPk PPPP    for 2,...,2,1  mk , (12) 

     1,10,0,1,0,0, 22  kPkkPk PPPP   for 2...,3,2  mk , (13) 

         1,11,20,0,1,0,0,0,11,0,10,1 222   mPmPmmmmmP PPPPPPP  , (14) 

       0,10,1,1,1,0,1,11,1,11,1 22   mPmmmmmP PPPPPP   (15) 

including normalisation equation: 

 1
1

1

1

0
,

1

1

0

1

0
,,0,1,00,0,0  



   

m

k v
vPk

m

k v o
ovk PPPP . (16) 

Please notice that equation (15) is linear combination of equations (1) up to (14), 
therefore we omit equation (15) and replace it by normalisation equation (16). Solving of 
linear equation system formed from equations (1) – (14), (16) we get stationary probabilities 
of the particular system states that are needed for computing of performance measures. 

Let us consider three performance measures – the mean number of the customers in the 
service ES, the mean number of the waiting customers EL and the mean number of the broken 
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servers EP. All of them can be computed according to the formula for the mean value of 

discrete random variable, where the random variable  1,0S  is the number of costumers in 

the service,  1,0  mL  the number of waiting customers and  1,0P  the number of 

broken servers. For the mean number of the costumers in the service ES we can write: 

 

  


m

k v o
ovkPES

1

1

0

1

0
,, ,  (17) 

the mean number of the waiting costumers EL can be expressed by formula: 

 
   
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v
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m

k v o
ovk PkPkEL , (18) 

and for the mean number of broken servers EP we get: 

 



 


1

1

1

0
,

m

k v
vPkPEP .  (19) 

3. SIMULATION MODEL 

To validate the mathematical model we created a simple simulation model using 
simulation software Witness 2008, which is intended for simulation of discrete event systems. 
The model is depicted in Fig. 2. 

 
Source: Author 

Fig. 2 – The simulation model created in Witness 2008. 
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4. OUTCOMES OF EXECUTED EXPERIMENTS  

Let us consider the studied queueing system with 5 places in the system. In Tab. 1 the 
values of applied random variables parameters are summarised. 

 
Tab. 1 – Applied random variables parameters 

Random variable (RV) Applied parameters of RV 
Interarrival times – Erlang RV k=2; 2λ = 18 h-1 

Service times – Erlang RV k=2; 2μ = 20 h-1 

Times of failure-free state – exponential RV η=200-1; 190-1;…, 20-1; 10-1 h-1

Times to repair – exponential RV ξ=0.2 h-1 

Source: Author 

For each value of the parameter η the stationary probabilities were computed 
numerically using software Matlab. On the basis of stationary probabilities knowledge we are 
able to compute the performance measures according to the corresponding formulas. Further 
we estimated the performance measures on the basis of simulation experiments, for each 
value of the parameter η we executed 30 simulation runs, each run was terminated after 
reaching simulation time equal to 525 600 minutes. On the basis of gained simulation 
outcomes we got 95% confidence intervals for the considered performance measures ES, EL 
and EP where Tl is the lower bound and Tu is the upper bound of the interval. Reached 
outcomes are summarized in Tab. 2. The graphical dependencies of individual performance 
measures on the reciprocal value of the parameter η are shown in Figs. 2, 3 and 4. 

 
Tab. 2 – Summary of reached outcomes 

1/η [h] 
Analytical results Simulation results 

ES EL EP Tl for ES Tu for ES Tl for EL Tu for EL Tl for EP Tu for EP
200 0,83012 1,36441 0,02075 0,83063 0,83359 1,35477 1,36498 0,01814 0,02179 
190 0,82924 1,36744 0,02182 0,82976 0,83273 1,35895 1,36938 0,01925 0,02286 
180 0,82825 1,37079 0,02301 0,82898 0,83184 1,36029 1,37191 0,02038 0,02399 
170 0,82716 1,37453 0,02433 0,82784 0,83068 1,36479 1,37585 0,02171 0,02528 
160 0,82593 1,37873 0,02581 0,82689 0,82989 1,36812 1,37916 0,02263 0,02640 
150 0,82454 1,38347 0,02748 0,82538 0,82870 1,37290 1,38474 0,02413 0,02809 
140 0,82296 1,38886 0,02939 0,82357 0,82742 1,37784 1,38949 0,02576 0,03014 
130 0,82115 1,39506 0,03158 0,82157 0,82557 1,38115 1,39596 0,02783 0,03261 
120 0,81904 1,40226 0,03413 0,81930 0,82352 1,38843 1,40232 0,03032 0,03521 
110 0,81656 1,41072 0,03712 0,81723 0,82122 1,39675 1,40958 0,03276 0,03754 
100 0,81361 1,42081 0,04068 0,81429 0,81863 1,40491 1,41968 0,03613 0,04128 
90 0,81003 1,43303 0,04500 0,81083 0,81550 1,41426 1,43072 0,03967 0,04536 
80 0,80560 1,44817 0,05035 0,80636 0,81125 1,42956 1,44721 0,04502 0,05084 
70 0,79997 1,46738 0,05714 0,80128 0,80656 1,44611 1,46370 0,05046 0,05670 
60 0,79259 1,49258 0,06605 0,79401 0,79936 1,47044 1,48931 0,05902 0,06551 
50 0,78248 1,52709 0,07825 0,78432 0,79035 1,50659 1,52755 0,07057 0,07784 
40 0,76779 1,57722 0,09597 0,76999 0,77642 1,55339 1,57530 0,08729 0,09502 
30 0,74449 1,65669 0,12408 0,74791 0,75465 1,62362 1,64720 0,11293 0,12098 
20 0,70188 1,80191 0,17547 0,70764 0,71393 1,76590 1,78653 0,16230 0,16983 
10 0,59897 2,15184 0,29949 0,60763 0,61384 2,11030 2,13243 0,28298 0,29040 

Source: Author 
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It can be seen from Tab. 2 that there are little differences between analytic and 
simulation outcomes; especially for lower values of the reciprocal value of parameter η we 
can see that some analytic outcomes lie outside the corresponding confidence intervals. But 
the differences are not essential and, in addition, can be partially explained by generally 
known disadvantages of simulation (for example using pseudo-random numbers). Therefore 
we can state that both models are valid.  

As we can see in Fig. 3, increasing value of parameter η (or decreasing value of the 
reciprocal value of parameter η) causes decreasing of the mean number of customers in the 
system ES. This fact could be logically expected because more frequent failures mean lower 
fraction of time in which the server is able to serve incoming customers. 
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Fig. 3 – The dependence of ES on parameter 1/η 
 
In Fig. 4 we can see that the mean number of waiting customers EL increases with 

decreasing reciprocal value of η because waiting of customers is prolonged due to more 
frequent failures.  
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Fig. 4 – The dependence of EL on parameter 1/η 
 
In Fig. 5 we can see that the dependency of the performance measure EP is increasing. 

This fact is obvious as well. 
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Fig. 5 – The dependence of EP on parameter 1/η 

5. CONCLUSIONS 

In this paper we paid attention to the finite E2/E2/1/m queue with the server subject to 
operate-dependent breakdowns. Further we considered that performed service of a customer 
operated at the moment of a server failure is lost and the customer either goes back to the 
queue or is rejected when the queue is full. We developed the state transition diagram and 
wrote the system of linear equations for the steady-state. The stationary probabilities can be 
numerically computed, for example, by using software Matlab. When we know the 
probabilities we are able to compute several performance measures we are interested in. 
Further we presented some numerical experiments executed with the model, to validate the 
mathematical model we created a simple simulation model using software Witness. We got 
some graphical dependencies of the selected performance measures on the reciprocal value of 
the parameter 1/η. 

In the future we would like to find the formula for the customer loss probability, 
because this performance measures is often very important for finite queueing systems. 
Further we would like to generalize the model for values of the shape parameter k≥2 and to 
program all necessary computations in Matlab.             
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