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ELEMENTARY MARKOV QUEUEING SYSTEMS WITH 
UNRELIABLE SERVER 

Michal Dorda1 

Summary:This paper presents some examples of elementary Markov unreliable queueing  
systems and their mathematical models. Selected models are represented by a state 
transition diagram and by appropriate system of linear equations for steady state 
probabilities computation. 
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1. INTRODUCTION 

In the queueing theory we usually ignore the fact that utility server is often a technical 
device and its breakdown can occur. Common analytic models (see for example in [1] or [2]) 
assume that the server works reliably without failures causing its deficit. If failures of the 
server occur often and we would use an analytic model of reliable queueing system for 
modeling studied system, reached outcomes can be inaccurate. In this case the suitable model 
of the unreliable queueing system should be used. This paper presents some examples of 
elementary Markov unreliable queueing systems models. Selected models are represented by 
a state transition diagram and by appropriate system of linear equations for steady state 
probabilities computation. Steady state probabilities are needed for performance measures 
computation. More information about mentioned models can be found in [3]. 

2. COMMON ASSUMPTIONS 

Let us assume the queueing system with a single unreliable server. Incoming 
customers wait for the service in a queue with capacity of m-1 customers. Thus there are m 
places in the system. Customers come to the system according to a Poisson process with a rate 

λ, that means interarrival times are exponentially distributed with mean value equal to 
λ
1 . 

Failures occur according to the Poisson process too, but with rate λ . The time between 

failures is an exponential random variable with mean value equal to 
λ
1 . 

Costumer service times and times between failures are exponential random variables 

with parameters μ and μ  respectively. Thus mean costumer service time is equal to 
μ
1   and 

mean server repair time is 
μ
1 . Customers are served one by one according to FIFO (First In - 
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First Out) discipline. On the basis of these assumptions we can say that all presented systems 
are according to Kendall‘s notation M/M/1/m systems with an unreliable server. 

3. UNRELIABLE M/M/1/m QUEUEING SYSTEMS WITH CUSTOMER 
SERVICE REPEATING 

Let us consider that a server breakdown can occur at any time. That means the server 
can break if it is busy (a costumer is in the service) or idle (there is no customer in the 
service). After occurrence of breakdown two different events can occur (if there is a costumer 
in the service just at the moment): 

• if there is less than m-1 customers in the queue, costumer comes back to the first 
queue place and after server repair his service starts from the beginning, 

• if there is exactly m-1 customers in the queue, costumer leaves the system and we 
consider he is rejected. 
 Let illustrate this queueing model graphically as a state transition diagram (see in 

fig. 1). To distinguish all presented models let us designate this model as 1st model. Vertices 
represent particular system states and oriented edges indicate possible transitions with 
corresponding rate. Notice that graph in fig. 1 is drawn without loops. 

 
Source: Author 

Fig. 1 - State transition diagram of 1st model (without loops). 
 

States of 1st model we can divide to two groups: 
• states denoted as 0,j, where the first symbol 0 says that server is failure free and the 

second symbol { }mj ,...,1,0∈  represents number of the costumers in the system, 
• states denoted as 1,j, where the first symbol 1 means server breakdown and the second 

symbol { }1,...,1,0 −∈ mj  is number of the waiting customers. 
 

On the basis of the state transition diagram we can obtain finite system of the 
differential equations for probabilities of the particular states depending on time t. For ∞→t  
we get the system of the linear equations for steady state probabilities that are not dependent 
on time t. For 1st model we obtain 2m+1 linear equations: 

( ) 0,11,00,00 PPP μμλλ +++−= , 

( ) jjjj PPPP ,11,0,01,00 μμλμλλ ++++−= +−  for 1,...,2,1 −= mj , 
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( ) mm PP ,01,00 λμλ +−= − , 

( ) 0,10,00 PP μλλ +−= , 

( ) jjj PPP ,11,1,00 μλλλ +−+= −  for 2,...,2,1 −= mj , 

1,12,1,01,00 −−− −++= mmmm PPPP μλλλ  

plus equation 1
1

0
,1

0
,0 =+∑∑

−

==

m

j
j

m

j
j PP . 

By solving of this linear equations system we get stationary probabilities of the 
particular system states that are needed for performance measures computing of studied 
queueing system. Let consider two selected performance measures - mean number of the 
customers in the service ES and mean number of the waiting customers EL. For 1st model we 
get: 

∑
=

=
m

j
jPES

1
,0  and ( ) ∑∑

−

==

+−=
1

1
,1

2
,01

m

j
j

m

j
j jPPjEL . 

Now let us focus on the simple modification of 1st model. Assume that the server 
breakdown can occur just during costumer service. If the server is idle, then there is zero 
probability of the server failure. The state transition diagram of this model (denoted as 2nd 
model) can be seen in fig. 2. Notice that states representation is the same with 1st model. 

 
Source: Author 

Fig. 2 - State transition diagram of 2nd model (without loops). 
 

The most remarkable difference is that in fig. 2 there is not the state denoted as 1,0. It is 
the consequence of our assumption that breakdown can not occur if the server is idle. For the 
2nd model we obtain for ∞→t  2m linear equations: 

1,00,00 PP μλ +−= , 

( ) jjjj PPPP ,11,0,01,00 μμλμλλ ++++−= +−  for 1,...,2,1 −= mj , 

( ) mm PP ,01,00 λμλ +−= − , 

( ) 1,11,00 PP μλλ +−= , 

( ) jjj PPP ,11,1,00 μλλλ +−+= −  for 2,...,3,2 −= mj , 
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1,12,1,01,00 −−− −++= mmmm PPPP μλλλ  

including equation 1
1

1
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In this case for selected performance measures we get: 
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4. UNRELIABLE M/M/1/m QUEUEING SYSTEMS WITH MASS 
CUSTOMERS DEPARTURE 

Let assume that server breakdown occurrence causes departure of all costumers from the 
system (these costumers are rejected). Further we assume that incoming customers are 
rejected until server is not repaired. Let us consider two versions of studied queueing system. 
In the first case (3rd model) breakdown may occur at any time, in the second case (4th model) 
just during the costumer service. The state transition diagrams are shown in fig. 3 and 4 
respectively. 

 
Source: Author 

Fig. 3 - State transition diagram of 3rd model. 
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Source: Author 

Fig. 4 - State transition diagram of 4th model. 
 

The states of both models can be interpreted as: 
• state P denotes server breakdown, there is no customer in the system and incoming 

customers are rejected, 
• states 0,1,...,k,...,m correspond to states of reliable M/M/1/m queueing system. 

On the basis of  the state transition diagram in fig. 4 we can see that in 4th model there is 
no transition from the state 0 to the state P (breakdown can not occur when the server is idle). 

For 3rd model we obtain m+2 linear equations: 

∑
=

+−=
m

k
kp PP

0
0 λμ , 

( ) 100 PPPp μλλμ ++−= , 

( ) 110 +− +++−= kkk PPP μλμλλ  for 1,...,2,1 −= mk , 

( ) mm PP λμλ +−= −10 , 

with equation 1
0

=+∑
=

m

k
kp PP . 

For selected performance measures we can write: 

∑
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m
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kPES
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 and ( )∑
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For 4th model we can write m+2 linear equations too: 

∑
=

+−=
m

k
kp PP

1
0 λμ , 

100 PPPp μλμ +−= , 

( ) 110 +− +++−= kkk PPP μλμλλ  for 1,...,2,1 −= mk , 

( ) mm PP λμλ +−= −10  
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plus equation 1
0

=+∑
=

m

k
kp PP . 

In this case for selected performance measures we get: 

∑
=

=
m

k
kPES

1
 and ( )∑

=

−=
m

k
kPkEL

2
1 . 

 

5. UNRELIABLE M/M/1/m QUEUEING SYSTEM WITH COSTUMER 
SERVICE COMPLETING AFTER OCCURRENCE OF BREAKDOWN 

Server failures in all the previous models break the costumer service immediately. But 
in some cases occurrence of breakdown do not cause an immediate interruption of the 
customer service. Look at the appropriate queueing model. 

At first let assume that the probability distribution of the customer service time before 
and after occurrence of breakdown is the same - an exponential distribution with parameter μ. 
The state transition diagram of this queueing model (5th model) is shown in fig. 5. 

 
Source: Author 

Fig. 5 - State transition diagram of 5th model. 
 

The states of 5th model can be described as: 
• states 0,1,...,k,...,m correspond to states of reliable M/M/1/m queueing system, 
• states denoted as k,P, where symbol { }mk ,...,2,1∈  describes number of customers in 

the system (a costumer in the service and k-1 waiting customers) and symbol P says 
that server breakdown have occurred, 

• states denoted as P,k, where symbol P indicates server repairing and symbol 
{ }1,...,2,1 −∈ mk  describes number of waiting customers. 
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For 5th model we get for ∞→t  3m+1 linear equations: 
( ) 0,100 PPPP μμλλ +++−= , 

( ) kPkkk PPPP ,110 μμλμλλ ++++−= +−  for 1,...,2,1 −= mk , 

( ) mm PP λμλ +−= −10 , 

( ) PPP ,110 μλλ +−= , 

( ) PkPkk PPP ,,10 μλλλ +−+= −  for 1...,3,2 −= mk , 

PmPmm PPP ,,10 μλλ −+= − , 

( ) 0,,100 PP PPP μλμλ +−+= , 

( ) kPkPPk PPP ,1,,10 μλλμ +−+= −+  for 2,...,2,1 −= mk , 

1,2,,0 −− −+= mPmPPm PPP μλμ  

with equation 1
1
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Selected performance measures can be computed as: 

∑∑
==

+=
m

k
Pk

m

k
k PPES

1
,

1

 and ( ) ( )[ ] ∑∑
−

==

+−+−=
1

1
,

2
,11

m

k
kP

m

k
Pkk kPPkPkEL . 

 

6. EXECUTED EXPERIMENTS AND THEIR OUTCOMES 

Let consider unreliable M/M/1/5 system (a maximal queue length is 4 costumers). Let 
consider 3 constant system parameters - 19 −= hλ , 110 −= hμ  and 12,0 −= hμ . The last 

parameter λ  will be increased from the minimum value 10001,0 −= hλ (this value 

corresponds to mean time between failures equal to h00010 ) to maximum value 11,0 −= hλ  
(mean time between failures is h10 ).  

Establish 
μ
λρ =  as breakdowns load. Focus on dependence of selected performance 

measures on ρ . These graphical relations we can see in fig. 6 up to fig. 10. Outcomes 
obtained by analytic computation are supplemented by outcomes gained by simulation of 
studied system in software Witness. All simulation experiments were executed for 2 years of 
real time. The constant curve shown in all graphs reflects reliable system performance 
measure behavior.  



Number 4., Volume IV., December 2009 
 

Dorda - Elementary Markov queueing systems with unreliable server  76
 

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,0
00

5

0,0
00

6

0,0
00

8

0,0
01

3

0,0
02

5

0,0
05

6

0,0
07

1

0,0
10

0

0,0
16

7

0,0
27

8

0,0
35

7

0,0
50

0

0,0
83

3

0,2
50

0

Breakdowns load

ES
Reliable system Computation Simulation

1,35

1,45

1,55

1,65

1,75

1,85

1,95

2,05

2,15

2,25

2,35

0,0
00

5

0,0
00

6

0,0
00

8

0,0
01

3

0,0
02

5

0,0
05

6

0,0
07

1

0,0
10

0

0,0
16

7

0,0
27

8

0,0
35

7

0,0
50

0

0,0
83

3

0,2
50

0

Breakdowns load

EL

Reliable system Computation Simulation

 
Source: Author 

Fig. 6: Dependence of ES on ρ  (on the left) and EL on ρ  (on the right) - 1st model. 
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Source: Author 

Fig. 7: Dependence of ES on ρ  (on the left) and EL on ρ  (on the right) - 2nd model. 
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Source: Author 

Fig. 8: Dependence of ES on ρ  (on the left) and EL on ρ  (on the right) - 3rd model. 
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Source: Author 

Fig. 9: Dependence of ES on ρ  (on the left) and EL on ρ  (on the right) - 4th model. 
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Source: Author 

Fig. 10: Dependence of ES on ρ  (on the left) and EL on ρ  (on the right) - 5th model. 
On the basis of the comparison of the gained dependence for particular models we can 

claim that there are no significant differences between analytic and simulation outcomes.  
 

7. CONCLUSION 

The presented paper introduces some analytic models of Markov unreliable queueing 
systems. All models are analytic solved through the state transition diagram and the system of 
the linear equations describing system of behavior in steady state. On the basis of stationary 
probabilities knowledge performance measures can be computed. In this paper two 
performance measures - mean number of the customers in the service ES and mean number of 
the waiting customers EL - were considered. Created analytic models were validated by 
simulation experiments in Witness. Executed experiments do not reveal significant 
differences between analytic and simulation outcomes. 
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