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MODELS OF AIR TRAFFIC  - REGRESSION MODELS  
 

 
Rudolf Volner1, Daša Tichá2 

 
Summary: Traffic models are at the heart of any performance evaluation of information data 

(information data about stream aircraft, about stream passengers in airport 
terminal, information data about luggage, etc.). An accurate estimation of network 
performance is critical for the success of data networks. Such networks need to 
guarantee an acceptable quality of service (QoS) level to the users. Therefore, 
traffic models need to be accurate and able to capture the statistical 
characteristics of the actual traffic. 
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1.  INTRODUCTION 

Performance modeling techniques are needed to determine which congestion control 
techniques should be used. Performance modeling techniques include: 
• analytical techniques, 
• computer simulation, 
• experimentation. 

Performance models require accurate traffic models which can capture the statistical 
charakteristics of actual traffic. If the traffic models  do not accurately represent actual traffic, 
one may overestimate or underestimate network performance. 
 
2. REGRESSION MODELS 

Regression models define explicitly the next random variable in the sequence by 
previous ones within a specified time window and a moving average of a deformation. In this 
section several regression models are presented. These models is possible employ near 
worked information data about stream aircraft, about stream passengers in airport terminal, 
information data about luggage, etc. 

Autoregressive models 
The autoregressive model of order p, denoted as ( )pAR , has the following form 

tptpttt XXXX εφφφ ++++= −−− .....2211        (1) 

where  tε  - deformation, 

jφ - real numbers, 
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 tX - prescribed correlated random variables. 

If  tε  is a white Gaussian deformation with variance 2
tε

σ , then tX  is will be normally 

distributed random variables. Let as define a lag operator B as tt BXX =−1 , and let ( )Bφ  be a 

polynomial in the operator B, defined as follows 
( ) ( )p

p BBB φφφ −−−= ....1 1  

Then, the ( )pAR  process can be represented as 
( ) ttXB εφ =           (2) 

The process { }tX  is stationary if the roots of  ( )Bφ  lie outside the unit circle [8]. The 

auto-correlation kρ  can be computed by multiplying eq.(1) with ktX − , taking the expectation, 

and dividing by the variance 0γ  

0,....2211 〉+++= −−− kforpkpkkk ρφρφρφρ      (3) 

Thus, the general solution is 
k
pp

kk
k GAGAGA +++= ....2211ρ        (4) 

Where 1−
iG  are the roots of ( )Bφ . Therefore, the auto-correlation function of ( )pAR  

process will consist, in general, of damped exponentials, and/or damped sine waves 
depending on whether the roots are or imaginary. 

Since successive information frames do not vary much visually, AR models have been 
used to model the output information rate of data encoder. In [2], a information source is 
approximated by a continuous fluid flow model. In the model, the output information rate 
within a frame period is constant and changes from frame to frame according to the following 
AR(1) model 

[ ] [ ] [ ]nbnn εφλλ +−= 1         (5) 
Where [ ]nλ  is the information rate during frame n and [ ]nε  is chosen such that the 

probability of  [ ]nλ  being negative is very small. Since the number of bits in frame n cannot 
be negative, the value of [ ]nλ  in eq.(5) is set to zero, whenever [ ]nλ  is negative. This model, 
cannot capture abrupt changes in the frame information rates that occur due to scene changes 
or visual discontinuities. Therefore, one may model the information rate of frames within the 
scene as an AR process and model the scene changes by an underlying Markov chain. 

In [2], information traffic is modeled as 

nnnnn CVZYX ++=  

nY  and nZ  are two independent AR(1) processes. These two AR processes are used to 

get a better fit of the auto-correlation function of the empirical data than using only one AR(1) 
process. The last term, nnCV  is the product of a 3-rate Markov chain and an independent 

normal random variable. It is designed to capture sample path spikes due to information data 
changes. This may work for encoding techniques in which only the difference between the 
frames and a reference frame is encoded and transmitted. Reference frames are transmitted 
when the difference is greater than a certain threshold. They, in general, indicate a data 
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change. Reference frames have higher bit rates than the other surrounding frames and they 
cause the spikes in the sample path of the bit rate of the information stream.  

Although it is easy to estimate the AR model parameters and to generate the data stream  
recursively, the exponential decay of the auto-correlation  functions makes the model unable 
to capture auto-correlation functions that decay at a slower rate than the exponential. AR is 
approximated in [2] by a Markov modulated fluid model, in order to obtain analytical queuing 
performance results. AR processes with Gaussian distribution cannot capture information 
traffic probability distribution.  

 
3. DISCRETE AUTOREGRESSIVE MODELS 

A discrete autoregressive model of order p, denoted as DAR(p), generates a stationary 
data stream of discrete random variables with an arbitrary probability distribution and with an 
auto-correlation structure similar to that of an AR(p). 

DAR(1) is a special case of DAR(p) process and it is defined as follows: let { }nV  and 

{ }nY  be two data streams of independent random variables. The random variable nV  can take 

two values 0 and 1, with probabilities, ρ−1  and ρ , respectively. The random variable nY  

has a discrete state space S and  { } ( )iiYP n π== . The data stream of random variables { }nX  

which is formed according to the linear model 
( ) nnnnn YVXVX −+= − 11  

is a DAR(1) process. DAR(1) process is a Markov chain with discrete state space S and 
a transition matrix 

( )QIP ρρ −+= 1  
where I – the identity matrix, 
 Q – matrix with for ( )jQij π=  for Sji ∈, . 

DAR(1) has a correlation structure of a first-order autoregressive process with k
k ρρ =  

and has the probability distribution function of π . In [1], the number of cells per frame of 
information data is modeled by DAR(1) with negative binomial distribution. The rows of the 
Q matrix consist of the negative-binomial probabilities ( )c

Kk Ffff ,,......,, 10 , where 

∑
〉

=
Kk

k
c

K fF , and K is the peak rate. Therefore, only mean, variance, peak rate, and first auto-

correlation coefficient are needed to be estimated from the data. DAR(1) has far less number 
of parameters than the general Markov chains. The parameter estimation is simple. The 
distribution of the resulting process is arbitrary. Moreover, the analytical queuing 
performance is tractable. On the other hand, the auto-correlation function decays 
exponentially and hence it cannot be used to model traffic with a slower auto-correlation 
decay. 
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Autoregressive moving average models 
An autoregressive moving average model of order ( )qp, , denoted as ARMA ( )qp, , has 

the form 

qtqtttptpttt XXXX −−−−−− Θ−−Θ−Θ−++++= εεεεφφφ ....... 22112211      (6) 

which can be equivalently represented as 
( ) ( ) tt BXB εφ Θ=          (7) 

where B and ( )Bφ  are as defined previously, and  

( ) ( )q
q BBB Θ−−Θ−= .......1 1φ   

This is equivalent to filtering a deformation process tε  by a causal linear shift time 

invariant filter having a rational system function with p poles and q zeros [8], that is  

( ) ( )
( ) ∑

∑

=

−

=

−

−

Θ−
== p

k

k
p

q

k

k
k

p

q

z

z

zA
zB

zH

1

0

1

1

φ
       (8) 

The auto/covariance kγ  of the ARMA(p,q) process can be obtained by multiplying 

eq.(6) with ktX − , taking the expectation and finding the cross/correlation between tε  and tX  

( )kqqkkpkpkk hhh −+−− Θ++Θ+Θ−++= ......... 110
2

11 εσγφγφγ      (9) 

where th  is the impulse response of the ARMA(p,q) filter ( )zH . 

Note that 0=Θ k  for qk 〉 , therefore, the auto-correlation of the process for qk 〉  

pkpkk −−− +++= ρφρφρφρ ....2211  for  qk 〉       (10) 

which is the same difference equation as eq.(3), therefore, the auto-correlation of the 
ARMA(p,q) decays exponentially. 

The duration of a information stream is equally divided into m time intervals. The 
number of cells in the thn  time interval is modeled by the following ARMA process 

∑
−

=
−− Θ+=

1

0

m

k
knkmnn XX εφ  

Since information data will correlate at each frame due to temporal correlation, the auto-
correlation function has peaks at all lags which are integer multiples of m. In the above model, 
the AR part is used to model the re-correlation effect and the kΘ ’s are used to fit the 

correlation at other lags. 
 

Autoregressive integrated moving average models 
The autoregressive integrated moving average model of order ( )qdp ,, , denoted as 

ARIMA ( )qdp ,, , is an extension to the ARMA(p,q). It is obtained by allowing the 

polynomial ( )Bφ  to have d roots equal to unity. The rest of the roots lie outside the unit 

circle. The ARIMA ( )qdp ,,  has the form 

( ) ( ) tt
d BXB εϕ Θ=∇=         (11) 
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where ∇  is a difference operator, defined as 
( ) ttt XXX ∇=− −1  

and ( )Bϕ  is a polynomial in B. 
Notice that 

( ) tt XBX −=∇ 1  

That ARIMA ( )qdp ,,  is used to model homogeneous non-stationary time series. For 
example, a time series that exhibits non-stationary in level, or in level and slope, can be 
modeled by using ARIMA ( )qp ,1,  and ARIMA ( )qp ,2, . 
 
4. TES MODELS 

Transform-expand-sample (TES) models are non-linear regression models with modulo-
1 arithmetic. They aim to capture both auto-correlation and marginal distribution of empirical 
data. TES models consist of two major TES processes [1, 2]: 

• +TES , 
• −TES . 

 +TES   produces a sequence which has positive correlation at lag 1, while −TES  
produces a negative correlation at lag 1. 
 Before describing +TES  or −TES , we need to introduce a few definitions and 
annotations. The modulo-1 of a real number x, denoted as x , is defined as 

 ⎣ ⎦xxx −=  

where ⎣ ⎦x  is the maximum integer less than x.  

 Therefore, x  is always non-negative. If the interval [0,1) is viewed as a circle that is 

obtained by joining the points 0 and 1, one can define a circular interval [ )baC , , where a and 
[ )1,0∈b , as all the points on the circular unit interval going clockwise from point a to point b. 

Therefore, 
 [ ) [ ) [ )

[ ){ baifba
baifabbaC ≤
〉−= ,,

,,1,0,  
+TES  and −TES  -  +TES (L,R) is introduced in [2] and is characterized by two parameters, L 

and R. The sequence { }+nU  is generated recursively as follows : initialize 00 UU =+ , where 0U  

is uniform in the interval (0,1), Then +
nU  is uniformly sampled random variable on the 

circular interval [ )RULUC nnUn
++= +

−
+
−+ 11 , . 

 In the −TES (L,R), the sequence is generated as in +TES  with −
nU  is uniform random 

variable over the circular interval 

 [ ) [ )
[ )

⎩⎨
⎧=
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+−−−
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 +TES  and −TES  can also be characterized by RL +=α , and 
α

φ LR −
= . Note that α  

represents the length of the circular interval. The sample path realizations generated by 
simulation using +TES  and −TES  have shown discontinuity due to the crossing of the 0 point 
on the unit circular interval from both directions. For example, crossing clockwise will result 
in a jump from small values to large values. It was shown in [8] that a continuous sample path 
realization can be obtained by using a simple piece wise transformation ξT  called stitching, 

where 

 
[ )

[ )

⎪⎩

⎪
⎨
⎧

=
∈

∈
−
−

ξ
ξ

ξ
ξ

ξ

,0,

1,,
1
1

xx

xxT  

 
 Autocorrelation of  +TES  and −TES   
 The lag-1 auto-correlation for TES  processes is derived in [2] and is given by 

 ( ) 2
22

1 2
31

2
331, αφαφφαρ +

+
+

−=+       (12) 

 ( ) 2
22

1 2
31

2
331, αφαφφαρ +

−
+

+−=−       (13) 

 The value of α  affects the magnitude of the correlation, while the value of φ  affects 
the oscillating behavior of the auto-correlation. The larger the α , the smaller the magnitude. 
If 0=φ , there will be no oscillation. For 0↑φ , the larger the φ , the faster the oscillation. 
The recursive construction of the underlying TES processes is defined as follows 

 
⎩⎨
⎧= =

〉+
+

+
−

0,
0,

0

1

nU
nVUn

nn
U  

 ( evennU
oddnUn

n

n
U ,

,1

+

+−
− =  

 Here, { }nV  is a sequence of independent identically distributed random variables 

independent from 0U . The resulting sequences { }+nU  and { }−nU  are uniformly distributed in 

[ )1,0  no matter what the density function of nV , denoted as Vf . The choice of  Vf  will result 

in a different correlation structure of the resulting process. 
 The targeted sequences { }+nX  and { }−nX  are then obtained by using the inversions  

 { } ( )++ = nn UDX  and { } ( )−− = nn UDX  

where 1−= FD  and F is marginal distribution of the desired sequence (the empirical data). 
 The fitting of the auto-correlation is done by a heuristic search for a pair Vf,ξ  [1]. A 

combination of TES processes can also be used to better fit the auto-correlation. The empirical 
distribution is matched using the distribution inversion methods. The auto-correlation 
function of TES processes decays exponentially. 
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5. CONCLUSION 

Traffic models are used in traffic engineering to predict network performance and to 
evaluate congestion control schemes. Traffic models vary in their ability to model various 
correlation structures and marginal distributions. Models that do not capture the statistical 
characteristics of the actual traffic result in poor network performance because they either 
over estimate, or under estimate the network performance. Traffic models must have a 
manageable number of parameters and the estimation of these parameters needs to be simple. 
Traffic models which are not analytically tractable can only be used to generate traffic traces. 
These traffic traces can be used in simulations. 
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