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KOMPENZACE PORUCH VZORKOVACI PERIODY
V DISKRETNICH SYSTEMECH RiZENIi LQG

HANDLING DISTURBANCES OF THE SCAN PERIOD IN
DISCRETE LQG CONTROL SYSTEMS

Jan Cvejn'

Anotace:Ridici aplikace zaloZené na vyuziti pocitacii, obzvldsté pokud bézi v prostiedi
béznych operacnich systéemu, casto vykazuji nekonstantnost vzorkovaci periody
zpracovani vstupii a vystupu. Ackoliv je tento jev obvykle zanedbdvan, jsou-li vyuzity
diskrétni algoritmy Fizeni, v nékterych pripadech miize zpiisobit vyrazné horsi
vykonnost Fidici smycky. V clanku je navrzen modifikovany algoritmus rizeni LOG,
ktery bere v uvahu poruchy vzorkovaci periody. Je rovnéz ukazano, zZe takovyto
Fidici systéem muze byt implementovan i na pomérné jednoduchych hardwarovych
platformach.

Klic¢ova slova: LOG regulator, stochastické rizeni, hybridni systémy

Summary: Computer-based control applications, especially if they run under general-purpose
operating systems, often exhibit variance of the scan period of processing inputs and
outputs. Although this phenomenon is usually neglected when discrete control
algorithms are used, in some cases it can cause significantly worse performance of
the control loop. In the paper a modified discrete LOG control algorithm that takes
disturbances of the scan period into account is proposed. It is also shown that such
a controller can be implemented even on relatively simple hardware platforms..
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1. INTRODUCTION

In the control theory analysis and design of control algorithms in the continuous-time
domain and in the discrete-time domain are treated separately. Continuous approach is natural
for modelling and analysis of real objects and will be always used for designing controllers on
the basis of analog components. Discrete approach seems to be advantageous for technical
implementation of control algorithms on microprocessor-based platforms.

Discrete control algorithms rely upon constant period of processing inputs and outputs.
However, constant scan period is usually not fully guaranteed in real situations. This
phenomenon occurs usually due to handling asynchronous hardware events in computer
systems. Although this problem is typical for general-purpose multitasking operating systems,
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even the most robust hardware platforms such as PLCs exhibit scan variance, especially if
these systems communicate over a network.

Irregularities of the scan period cause worse performance of the control loop in
comparison to theoretical case. This influence is can be neglected if they occur rarely and the
system time constants are large in comparison to the scan period. In other cases the influence
on the closed loop dynamics can be significant.

In this paper we describe a modification of the stochastic linear-quadratic-Gaussian
(LQG) discrete control algorithm taking into account irregularities of the scan period. We
show that the effect of the scan variance can be partially compensated by mathematical means
if a hybrid control law is used, working at discrete steps but using a continuous-time model
for the state estimation and for determination of the control output.

2. PROBLEM FORMULATION
Consider a continuous time-invariant linear system

x =Fx(¢)+ Gu(z) + Lw(¢)

y = Hx(1) +n(r) M

where dimensions of x and u are » and m, respectively, n>m. F, G, H, and L are
known matrices of corresponding dimensions. Disturbance input w(f) and the

measurement noise n(¢z) are uncorrelated white Gaussian random processes with zero
mean value and autocorrelations

E{w(Ow" (1)} = W3(t-7)

(2)
E{n(tn’ ()} =N&(t - 7)

where 6(¢) is Dirac impulse function. We are looking for a control history such that

0

J= %E {f x” (H)Qx (1) +u” (£)Ru(?) dr} —> min 3)

where E{} is the mean value operator, Q, R are given symmetric positive definite
matrices and ¢, 1s a large enough constant.

We assume that the current state x(¢) is not known, but has to be estimated
from the measurements y(¢). It is known that linear-quadratic control problems with
Gaussian disturbances obey a separation property, which enables to design the control
and estimation logic separately and moreover they possess the certainty-equivalence
property, which means that the optimal controller is the same as in deterministic case
without disturbances [2] — [4].

Although the system nature is continuous, we consider that the measurements
are taken at discrete time steps ¢, <t, <.... We assume that the scan instants are not
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equidistant, but the instants of past measurements are known. Thus each measurement
y(t,) 1s provided with its time mark. This requirement usually can be easily

technically realized. The same instants are used for generating control output. We
assume that the control output generated at time ¢, is constant until the next scan at

t, . If the current scan time ¢, 1is known, the next scan instants ¢ _,.¢, ,,... are
considered as random quantities with known expected values ¢, ,¢,,.... Note that ¢,
usually does not depend on the current value of ¢, since it is derived from global
system clock.

Denote {f,} known instants of the hardware clock interrupts. It holds

~

! —fl. =T = const. 4)

i+1
We adopt the following simple model for the sequence 7.z, ,,..., which corresponds

to many real platforms:

o =t+T, i2k+1
_ . )
ZLkJrl = Z‘n
where 7, is the least interrupt instant after #, such that
i >t +d (6)

and d €(0,7) is a known parameter. In this model a significant scan delay can cause

loosing one scan instant and the values 7, ¢, ,,... (expected future scan instants) are

+1°

equidistant.

3. OPTIMAL STATE ESTIMATION

Consider that the optimal state estimate X, , =X(z, ;) and the state covariance

estimate

]"\)k—l = P(tk—l) = E{(Xk—l -X, )(Xk—l -X,, )T} (7)

are known at time ¢, ;. The state estimate can be extrapolated from ¢, , to 7,. By

integrating equations (1) and using X, , as initial condition we have

X, =0t )X, )+ E{ _f (¢, r)[Gu(r) + Lw(r)] dr} =

/=)

t
=®(t,,t,_ )X, (1) + j ®(,,7)dr.Gu,_, =@, t, )X, (O)+¥ (.t )u,, (8)

/=)
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where ®(z,,¢, ) is the transition matrix from ¢, | to 7, , u,, is the control value set at
t,.,, which is constant in [z,_,,z, ). Since the system is time-invariant, the matrices
®(t,t,)and ¥(t,¢,) depend only on difference 7-z,, 1.e. ®(t,z,)0 ®(r—¢t,) and
Y(t,t,) 0 W(t—t,). Since holds

X, =X, =@, 1, )X, — X )+ tj @, ,7)Lw(r) dr 9

Tj-1

for the covariance extrapolation P, we easily obtain

P, =®(t,,t, )P @ (t,,1, )+T(t,.1,,) (10)

where
[

T(t,,t, )= j jq>(zk,r)LE{w(r)wT(a)}LTcpT(zk,a) dadr

Tt et

= j O, 7)) LWL ®' (1,,7) dr . (11)

Lk

Optimal-variance estimate X, of x, is provided by the Kalman filter formula [1], [3]:

X, =@ —t, )X, +¥(t, —t_Ju_, +

] (12)
+K, [Y(tk) —-H ((I)(tk 4 )X+ -1 )y ):I
where the gain matrix K, is given by
K,=PH [HPH +N] (13)
and the covariance estimate update for the next step is
5 B- Ry o o
P =[P'+H'N'H]| =(I,-K,H)P,. (14)

4. OPTIMAL CONTROL ALGORITHM

We adopt the model (5), (6) for prediction of the scan instants ¢, i>k. The
current time 7, and the current state estimate %, are known. For simplicity we denote
t, the estimates of ¢, for i > k+1, instead of 7 . The criterion value from #, to ¢, can be

expressed as

J(t,)= %E {g J’l x (H)Qx(¢) +u’ (1)Ru(z) dt} (15)

i=k t

Cejn - Kompenzace poruch vzorkovaci periody v diskrétnich systémech fizeni LQG 54




Rocnik 3., Cislo 5., 2008

where N is a sufficiently large integer. Note that unlike common practice the criterion

includes information about complete state history in [O,tf} , and not only about values
at discrete points {z,} .

Denote for simplicity X, = E{x(¢,)}, u, =u(z,). For ¢ €[¢,.,) holds

i+1

X() =D®(t,t,)x(t,)+¥(t,t)u, + j@(t, 7)Lw(7r) dr. (16)

By substituting into (15) and using the fact that X, = x, , we obtained

I, %, ] 1
) =X W JUG =) |+ B =)+ (1) (17)
(u, | 2
where
1 X | N-k-1_
—5;[# uf ]U(T)_u,._+ S 2 (18)
and
hh
E(h) = j j Tr(Q®@(r,))LWL' @' (1,7)) dr dt (19)
00

The matrix function U(%) has the form

U(h){?fh) W’”} (20)
M’ (h) R(h)
where

Q) = [®" ()Q®(r)dr, M(h) = [®" ()Q¥(r)dr ,

R(h) = j (¥ (1)Q¥(r)+R)dr. 21)

Denote J'(z,) the minimal value of J(z,). Since the stochastic terms Z(¢,,, —¢,), Z(T)
do not contain control and state, they do not take part in the minimization of J(z,) . By

application of the Bellman optimality principle [1] we obtain

J*(tk>=n;3n{%[&£ w JUG, - ){ } }

+%[ (.~ 1)+ (N —k—1)E(T)]

(22)

where
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=

Vew== 2 [X v} ]U(T)ﬂ (23)
u.

1

1
2,

]
b

+1

and
Via=, min V.. (24)

[

Minimization of V,,, with dynamic constraints

- X,
Xin = [‘I)(T)a T(T)]|:u } (25)
is a discrete deterministic linear-quadratic optimal control problem (the instants
t,.1st.,»-- are equidistant by assumption). The optimal cost-function value for N — «

1s in the form

.1 1 @’ (h)
V.,==X,,SX,,, =—|X., u,
1Ty TS Tk [ k k}{‘PT(h)

S[®(h), ¥(h % 26
5 [(),()]u (26)

k

where h=t_, -t 1s expected distance of the next scan and S 1s determined as a

1

steady-state solution of the difference Riccati equation with terminal condition S, =0

[3]:

S, =Q(1)+®"(T)S,,®(T) -
1~ 27
—(M(T)+®" ()8, ¥())(R(D)+¥'(T)S,,¥(T) ) (M"(T)+¥'(T)S,,®(T)). i
The minimizer of J(¢,) 1s
. A A ﬁk
u, = argmu:n E[Xk u, ]Z(h) " (28)
where
200 = Ul {@i(h)sm(h) (I)TT(h)S‘I’(h) } | 29)
Y (WS®(h) Y (h)SY,(h)
The solution easily found by differentiation is in the form
u, =—E(h)'D(h)3, (30)
where
D(h) =M’ (h)+¥" (h)S®(h), E(h)=R(h)+¥" (h)S¥(h). (31)

Note that the matrix inversion in (30) exists, since Rand S are positive definite. The
controller matrix C(%) is dependent on expected distance of the next scan 4. Since the
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stochastic terms do not take part in minimization, the certainty equivalence property
holds in this case as well.

5. IMPLEMENTATION OF THE CONTROLLER

Obtained expressions are rather complicated to be computed at each control step.
The steady-state solution of the Riccati equation (27) is constant and can be obtained
off-line as a part of the controller design. Basic method of obtaining S consists in
solving (27) iteratively until ||S,,, —S,| < & . More efficient methods are proposed in [5],
[6].

If we assume that it is guaranteed for some 7, >0
t[+l - ti < hmax (32)

the values of needed matrix functions ®(h),¥(h),T'(h),Q(h),M(h),R(h) can be

computed for /2 from 0 to A, with a given step Ak and stored in computer memory.

In on-line mode it is possible only to select values corresponding to a nearest value of
h..

The transition matrix can be computed directly by integrating the definition
equations

d — —_
() =F®(h), ®0)=1,. (33)

The expressions for the other matrices dependent on 4 can be rewritten into the
form of differential equations as well. Formally written, it is needed to integrate the
following set of equations:

[®(h)] [Foh) 1 [®O] [1]

Y(h) | | ®Hh)G ¥(0) 0,,
d f(h) _ ®(h)LWL' ®" (1) f(O) _|0 (34
dh | Q(h) | | ® (h)Q®(h) " 1Q) | |0

M(n) | | P(h)QY(h) M(©)| (0

R(h) | [P (MWQ¥(M+R | |R(0) | [0 ]

Computation of matrix inversions in (13) and (30) in real time may be
disadvantageous. However, the controller matrix C(4) can be pre-computed on the
basis of the solution of (34). To avoid matrix inversion in the Kalman filter formula
(13) it is possible to process individual components of the measurement vector y
separately [3].

The results were tested for the plant
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F=l* e m=p o, L=t Y= 35
o Y Y R L B P (35)

with initial conditions

x(0) = : , %(0) = Ol p oL (36)
O 0 0 2

The system is unstable and oscillating. Assumed noise covariances are W =1,,
N =[1], but noise inputs are kept zero in simulation. The criterion parameters were

chosen as
Q=I,, R=1,. (37)

The scan period is 7 =0.5s, but each third scan was delayed of 50%. Figures 1-2 show
response of the system and of the control variable for classical discrete LQG controller
tuned for constant 7'=0.5s. Figures 3-4 show corresponding histories for the hybrid
controller given by equations (12) and (30). For 7 =1s we even obtained non-stable
behaviour of classical controller, but hybrid controller was still able to stabilize the
system rather efficiently. It is however true, that under normal conditions the scan
period is usually more regular and shorter in comparison to the system time constants.
The differences then may be unimportant.

Fig. 1: History of the state — discrete controller
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Fig. 3: History of the state - hybrid controller
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Fig. 4: History of the control variable - hybrid controller

6. CONCLUSION

The modification of the LQG control algorithm described in this paper reduces
influence of the scan period variance on the closed-loop performance. This
modification regards both the state estimation and the control law. Although obtained
expressions are rather complicated to be computed in real time, if a sufficient memory
in the control system is available, it is possible to carry out most of the computations
in forward and the control action itself is not a complicated or a time-consuming
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operation. Consequently, such a control law can be implemented even on relatively
simple hardware platforms.

This paper has been funded by institutional research “Theory of transport systems”
(MSM 0021627505) on University of Pardubice.
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