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COMPARISON OF HOGHORN ANALYSIS METHODS 

Vladimir SCHEJBAL1,*, Vaclav VLASAK2, Dusan CERMAK1, Vitezslav KRCMAR1 

Abstract The paper compares an aperture method and full-wave numerical simulations of hoghorn, which is used 

as a simple primary feed for reflector antennas or individually without reflector. The hoghorn consists 

of a sectoral horn flaring in only one plane and a parabolic cylinder. We briefly explain the calculations 

of hoghorn dimensions, aperture distributions and radiation patterns. This is suitable for numerical 

computations. We analyze the completely new simultaneous comparisons of the ample experiments 

with numerical results of both the aperture method and the numerical simulations. This enables to 

obtain innovative conclusions. Proposed improvements can diminish slight differences of one 

polarization between experiments and numerical simulations. We have used the described methods for 

the design of certain antennas for multilateration systems, such as Tamara and Vera passive radars, for 

civilian and military air traffic control, which greatly improve the accuracy of tracking aircrafts. 

Keywords air traffic control, antenna design, hoghorn, antenna radiation patterns, radar antennas, antenna 

measurements 

1 INTRODUCTION 

The design of any antenna and especially radar antenna should use suitable software. It is frequent radar 

prerequisite to have a narrow beam in one plane and a shaped beam in the other. Various primary feeds 

can produce the fan beams. A sectoral horn with aperture length greater than 4 ( is the wavelength) is 

very long (for given phase error, its length increases with the second power of aperture length). That can 

be unacceptable for most applications. The horns with lenses or arrays are shorter but more complicated. 

The hoghorn could act for a simple primary feed for reflector antennas (Balanis, 2008; Kuhn, 1964; 

Pippard, 1946; Pratt and Shearman, 1969; Schejbal, 1972). It consists of a sectoral horn flaring in only one 

plane and a parabolic cylinder as is shown in Fig. 1a. The paper presents numerical calculations of hoghorn 

dimensions. We could consider hoghorns as special variants of parabolic antennas. The hoghorns contain 

various advantages such as high efficiencies, excellent impedance matching, low levels of back lobe 

radiations, and reasonable stabilities of radiation patterns. Compact designs allow utilizations at the worst 

environment conditions. On the other hand, the difficulties are relatively high levels of sidelobes near by 

the main lobe. (Kriz, 1986;` Kriz et al. 2010; Schejbal, 2011) describe various expansions of the hoghorn 

design such as input impedance matching for octave frequency bandwidths or dual orthogonal 

polarization operations. Obviously, the hoghorn can operate individually without reflector. The described 

methods were used for the design of certain antennas (frequency bands of 4 – 8, 8 – 12 and 12 – 18 GHz) 

for multilateration systems, such as Tamara and Vera passive radars, for civilian and military air traffic 

control (ATC), which improve the accuracy of tracking aircrafts (Bezousek and Schejbal, 2004; Schejbal et 

al. 1994; Slezak and Pavlovic, 2015). We compare the ample measurements with numerical results of the 

aperture method (Schejbal, 1972) and the full-wave numerical simulations (Vlasak and Schejbal, 2014). 
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(Harrington, 2001; Stratton, 1941) analyze the two-dimensional radiation. The paper gives calculations of 

dimensions, aperture distributions and radiation patterns. That is suitable for very fast numerical 

computations for both analyses and syntheses. The completely new simultaneous comparisons of 

measurements with both aperture method and full-wave analyses allow achievement of new conclusions 

given in this paper. 

2 HOGHORN DIMENSIONS 

The dimension calculation uses the following equation (Schejbal, 1972) 
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where d = BC is aperture height, a = FP, F is parabola focus, OF=f, G is the flare ASB angle,  is the FSP 

angle,  is the FSA angle and b’ = SP as is shown in Fig. 1a, a1, b1 and c1 are given by 
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It is possible to determine the required parameters numerically. However, coding of the nonlinear 

equation solution for antenna dimensions is relatively simple. 

Fig. 1 Geometry (a) and field distributions (b) of hoghorn. 

3 APERTURE METHOD 

(Milligan, 2005; Silver, 1949) present the boundary value problem in wedge GSC shown in Fig. 1b. The 

cylindrical waves propagating between plates from arc, GC, to parabola, p, are regarded. The two-
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dimensional Kirchhoff’s formula (Schejbal, 1972) calculates a parabola distribution. The fields in terms of 

Hankel functions in cylindrical coordinates are considered. The plane wave propagates from parabola to 

aperture BC. The resultant aperture distributions consist of a sum of radiation from arc GC and the plane 

wave propagation from the parabola to aperture. 

The following equations give the Ez component (normal to the symmetry plane) and the E’y component 

(parallel to the symmetry plane) of aperture distributions (Schejbal, 1972) 
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where k = 2/,  is the free-space wavelength and r1 = x’s – x’M. That corresponds to the propagation of 

plane wave from parabola p (such as point M with x’M, y’M coordinates in Fig. 1) to aperture BC (with x’s, y’s 

coordinates). Fig. 1 shows the flare angle G, unit vectors ir and n. the angle  corresponding to point L and 

the distance r. The distance between point L and the aperture point is r2, b is the distance between the both 

hoghorn plates (aperture width), H0(2)(kr) and H1(2)(kr) are Hankel functions of the second kind of order 0 

and 1, respectively, and  = [k2 – (/b)2]1/2. The integrals in equations (2) and (3) are calculated using n-

point Gaussian integration, whose idea is to give the freedom to choose weighting coefficients but also 

locations of points. The integration is exact for all polynomials of degree 2n – 1 or less. The radiation 

patterns are determined using computed aperture distributions (2) or (3) by an aperture method 

(Schejbal, 1972).  

4 COMPARISONS OF NUMERICAL SIMULATIONS AND MEASUREMENTS 

The aperture methods and full-wave numerical simulations have been used for the hoghorn design with 

G = 50o and 256 x 30 mm hoghorn mouth for both polarizations. That means for components Ez (normal) 

and E’y (parallel). We compare the computations using the aperture method and the full-wave simulations 

with the measurements of the far field patterns and field distributions. For a relatively narrow frequency 

band of 9.25 – 9.45 GHz, the design could be rather simple. We can roughly estimate an admittance of 

sectoral horn from the transmission-line point of view (Silver, 1949). The sectoral horn consists of a length 

of sectoral guide terminated by the mouth admittance at one end and joined to uniform guide at the other. 

We discus the hoghorn admittance characteristics considering sectoral guide transmission-line 

arguments. The full-wave numerical simulations usually allow much better analyses of admittances. 

The magnitude of scattering parameter S11 (reflection coefficient) show Fig. 3 in (Vlasak and Schejbal, 

2014) for both polarizations (normal and parallel to the symmetry plane), and therefore is not shown here. 

It is clear that the reflection coefficients for both polarizations are relatively low. Moreover, the frequency 

bandwidths are quite broad and it is possible to extend them easily. The correspondence to measurements 

are not performed since the measurement has been done with a transition between standard rectangular 

waveguide and square cross section of hoghorn input and numerical simulations have been done without 

any transition. That would create some discrepancies considering very low reflection coefficients of the 

transition and hoghorn. Similarly, the comparison with rather rough estimation using the transmission-

line point of view is not very useful. 
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Fig. 2a shows the hoghorn and 3D radiation pattern of normal polarization, Ez, for frequency of 9.375 GHz 

using full-wave numerical simulations. Similarly, Fig. 2b shows the hoghorn and 3D radiation pattern of 

parallel polarization, E’y, for the same frequency. Considering Figs. 2a and 2b the directivities can be seen. 

The normal polarization directivity for Ez is 18.9 dBi and the parallel polarization directivity for E’y is 17.4 

dBi. The patterns offer the directivity. Gain and directivity vary only by the efficiency. Therefore, it is 

necessary (Milligan, 2005) to measure the gain, i.e. product of directivity and efficiency. 

Fig. 2 The 3D radiation pattern for normal polarization, Ez, (a) and parallel polarization, E’y, (b). 

We have measured the radiation patterns at an anechoic chamber with a 4 m separation between both 

antennas. It is clear that the measurements are not very accurate, as this separation creates quadratic 

phase errors (the usual criterion 2d2/ gives about 4.1 m). Normally, we should use much greater distance 

for accurate measurements. We have employed the comparison technique using standard horn antenna 

(Hollis et al. 1985) for “far-field” gain measurement. Calculated gains suffice for some comparison 

measurements where high accuracy is not required. We have to take an attention to obtain a proper test 

environment and processing the errors from various sources to insure that the measured gain reveals the 

true gain of antenna. The measured gains are approximately 18 dBi and slightly higher gain by 0.3 dB for 

the normal polarization. 

The error of gain measurements could be estimated as 0.5 dB for a given far-field range. We have to 

consider not only the antenna under test but the standard horn antenna. On the other hand, the electric 

field distribution, and therefore radiation pattern directivities found by numerical simulations, are 

disturbed in the plane normal to the symmetry plane (Dolecek and Schejbal, 2009; Schejbal, 1999). 

Frequently, the numerical simulations of radiation patterns for narrow aperture are not very accurate. 

Therefore, it could be concluded that the directivities found by numerical simulations agree with the 

measurements of gain as the efficiency of hoghorn is very high. 
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Fig. 3 shows the calculation (2), numerical simulations, and measurement of radiation pattern for normal 

polarization of 9.375 GHz frequency. Similarly, Fig. 4 shows the calculation (3), numerical simulations and 

measurement of radiation pattern for parallel polarization for the same frequency. The experiments are 

shown by solid lines, calculations (2) or (3) by crosses, and numerical simulations are shown by dotted 

lines in Figs. 3 and 4. This demonstrate that the measured values correspond to numerical simulations and 

calculations. The agreement is better for normal polarization, Ez. 

Fig. 3 Calculation (2), numerical simulations, and measurement of radiation pattern for normal polarization, Ez, 

(f = 9.375 GHz). 

It is possible to explain partly the greater differences of parallel polarization considering the tolerances. 

The hoghorn contain a parallel plate waveguide with the distance b between plates (Harrington, 2001). If 

we analyze the change of b then the phase change for a distance l is 
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where  is the free-space wavelength and g is the guide wavelength. Considering l = 380 mm, b =30 mm 

and width change of b = 0.5 mm the phase change would be 24 degrees. That could cause the radiation 

pattern changes such as shifting of beam directions or shape deformations due to phase shift between the 

direct radiation from the input horn and reflection from the parabolic cylinder. It is obvious that these 

changes would create frequency instabilities. 

Similarly, we can perform the stability analyses using (2) and (3). We have tested the field distributions 

using the center-fed half-wavelength dipole with the 2 mm distance in front of the aperture. (Schejbal, 

2011) perform the detailed analyses. Thus, the substantial outcomes are only given. 

We can see that the measured distributions of Ez normal components for different frequencies do not 

change substantially. Measured and calculated results are very similar. 
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However, we can deduce that the measured distributions of E’y parallel components for different 

frequencies change substantially. Measured and calculated results are substantially different. The 

interferences of incident radiation from arc GC and the plane wave propagation from parabola to aperture 

(3) mostly cause discrepancies as they shift the maxima and minima positions. Moreover, the probes 

operate as spatial filters on the near-field phase front. 

Fig. 4 Calculations (3), numerical simulations and measurement of radiation pattern for parallel polarization, 

E’y,(f = 9.375 GHz). 

To diminish (and prove experimentally) reflections at point A shown in Fig. 1a for parallel polarizations, 

we place two plates parallel to the symmetry according to Fig. 6 in (Schejbal, 2011). The theoretical 

analyses of effects of inserted plates could be very complicated but it is possible to assume that effects of 

inserted plates for normal polarizations are very small. On the other hand, the parallel polarizations cannot 

propagate between inserted plates, when operating frequency is less than cutoff frequency. That means 

none of modes can propagate, and therefore the reflection at point A cannot occur, i.e. an effective wall 

reflects rays at various directions. The matched dual-mode square waveguide corner use the same idea of 

effective wall (Park and Eisenhart, 1989; Schejbal, 1972). 

The radiation patterns of hoghorn with inserted plates with normal polarizations are not changed but for 

parallel polarization, E’y, are much more stable (as Fig. 7 and 8 in (Schejbal, 2011) demonstrate). We can 

clarify that using the comparison of beamwidths for the original hoghorn and the hoghorn with inserted 

plates. Fig. 5 shows the measured values of beamwidths for -10 dB levels. The IP labels indicate the 

inserted plate beamwidths. 

It is not necessary to state that the accuracy of radiation pattern calculations using aperture method (2) or 

(3) for hoghorn with inserted plates would be very low. Therefore, we do not show these radiation 

patterns. On the other hand full-wave numerical simulations may be successfully used. Fig. 6 shows the 3D 

radiation pattern for normal polarization, Ez, and parallel polarization E’y. 

According to measurements and full-wave numerical simulations, we can clearly demonstrate that the 

radiation patterns for normal polarizations are relatively stable for both cases (i.e. with and without 

inserted plates). However, the radiation patterns for parallel polarizations are slightly changing. That 

changes the beamwidths, sidelobe levels, and therefore the gain differences (Dolecek and Schejbal, 2009). 
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On the other hand, we can observe that the inserted plates substantially improved the radiation frequency 

stability. However, the inserted plates cannot improve the changes of radiation patterns such as shifting 

of beam directions or shape deformations due to phase shift between the direct radiation from the input 

horn and reflection from the parabolic cylinder for parallel polarization, E’y, caused by the tolerances (4). 

Fig. 5 Measured values of beamwidths for -10 dB levels for polarizations normal (Ez) and parallel (E’y) to the 

symmetry plane. Inserted plates are labelled by IP. 

Fig. 6 The 3D radiation pattern of hoghorn with inserted plates for normal polarization Ez, (a) and parallel 

polarization E’y (b). 

It is obvious that these changes would create frequency instabilities. That cannot discover aperture 

method or numerical simulation without any tolerance analysis. The aperture method, which is very fast, 

could perform this more advantageously (much more quickly). Similarly, the aperture method could be 

advantageously used for syntheses and/or optimizing of hoghorns. An example of optimization 

considering the change of  +  angles (see Fig. 1) gives Tab. 1. It is not necessary to explain that detailed 



Perner’s Contacts 15(2), 2020  

 

observations such as the field distribution analyses and/or radiation patterns could reveal various 

physical phenomena, which could affect the hoghorn design. Obviously, detailed observation of electric 

and/or magnetic field distributions using the full wave numerical simulations could be very useful and the 

combination of both aperture method and numerical simulations would improve the physical 

understanding of the antenna design. 

Tab. 1 Optimization of  +  angles for normal polarizations.  

 +  (deg) 40 60 70 75 80 

3 dB beamwidth (deg)  11.5 13.7 11.5 12.7 13.3 

10 dB beamwidth (deg) 19.6 27.4 19.8 21.7 23.4 

Sidelobe (dB) 15.6 15 16.2 17 15 

 

We can consider the uniform distribution for normal components, Ez, and the cosine distribution of the 

parallel component, E’y, for radiation pattern in plane normal to the symmetry plane. However, the 

distance between the hoghorn plates is about a wavelength, and therefore the aperture method calculation 

is not suitable as aperture theory fails for small horns as the edge diffractions determine beams much more 

than the aperture fields (Kriz at el. 2010; Silver, 1949). 

5 CONCLUSION 

We have used the described methods for the design of certain antennas (frequency bands of 4 – 8, 8 – 12 

and 12 – 18 GHz) for multilateration systems, such as Tamara and Vera passive radars, for civilian and 

military air traffic control, which greatly improve the accuracy of tracking aircrafts. 

We perform the analyses of hoghorn using two various approaches: an aperture method and full-wave 

numerical simulations. The paper explain calculations of hoghorn dimensions, aperture distributions and 

radiation patterns using the aperture method. That is very suitable for numerical calculations considering 

the CPU time and memory. The two-dimensional Kirchhoff’s formula can analyze parabola distribution. 

The field calculations in cylindrical coordinates use the Hankel functions.  

We calculate the radiation patterns by an aperture method using aperture distributions. It is obvious that 

this procedure is very simplified as aperture method could compute the structures substantially greater 

than the wavelength. Moreover, we use various simplifications such as neglecting of reflections from 

abrupt changes inside hoghorn. 

We compare the numerical results of the aperture method and the full-wave numerical simulations with 

the experiments. This enables to obtain new conclusions. Fig. 5 shows slight discrepancies for one 

polarization, which the proposed improvements diminish.  

We could conclude that the directivities found by numerical simulations agree within the estimated errors 

with gain measurements of the hoghorn. Actually, the differences between gain and directivity are very 

small as the efficiency of hoghorn is very high. 

The measurements of radiation patterns are consistent with numerical simulations. The agreement is 

better for polarization normal to the symmetry plane than for polarization parallel to the symmetry plane. 

It is possible to explain the greater differences of polarization parallel to the symmetry plane considering 

the tolerances. Moreover, the reflections are especially important considering point A, shown in Fig. 1 (the 

horn and parabola joint). To diminish (and prove experimentally) these reflections for E’y parallel 

components, we propose the changes of the hoghorn design. That diminishes reflections at this junction 

for the parallel polarization. 
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We have demonstrated that both the aperture method and full-wave numerical simulations enable the 

hoghorn design. The new simultaneous comparisons of measurements with both aperture method and 

full-wave analyses allow reaching new conclusions given in this paper. The aperture method is very fast. 

Therefore, it could be advantageously used for syntheses and/or optimizing of hoghorns. On the other 

hand, the full-wave numerical simulations are user friendly and can offer more possibilities (some of them 

are clearly illustrated) but they are usually time-consuming. 

It is not necessary to state that the accuracy of radiation pattern calculations using aperture method for 

improved hoghorn with inserted plates could be very low, and therefore it is not possible to use them 

successfully. 

Alternatively, we could use the full-wave numerical simulations even for very complicated situations as 

Fig. 6 demonstrates. Obviously, detailed observation of electric and/or magnetic field distributions using 

the full wave numerical simulations could be very useful and the combination of both aperture method 

and numerical simulations would improve the physical understanding of the antenna design. 
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