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INVESTIGATION OF THE CRACK DRIVING FORCE IN 
WHEEL-RAIL CONTACT 

Michal Kráčalík1 

Summary: This paper investigates the crack driving force in the wheel-rail contact using a finite 
element model. The presented work determines significant model variables such as an 
effect of the loading type, friction coefficients, cyclic plasticity and the number of the 
integration contour on the crack driving force and lays the foundation for the further 
development of the model and computational schemes.    
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INTRODUCTION 

Surface cracks are presents in the wheels and the rails due to their mutual contact (1-2). 
The initial contact conditions are changed during the rolling/sliding contact (2-3), and the 
contact geometry is slowly changed by the plastic deformation and wear (4). Wear is thought 
to be the product of the heavily plastic deformation near the contact surface that is mainly 
influenced by the surface roughness (5). The temperature effects can affect the wear and cracks 
in the wheel and in the rail (6-11). 

Finite element (FE) simulations are widely used to investigate surface cracks in the wheel-
rail contact for many years (12-13). The contact loading is usually prescribed as the moving 
Hertz pressure distribution (14-21) or it is applied by the modelled wheel (13, 22-25). Usually 
2-D FE models with linear-elastic (14, 15, 17, 18, 19, 21, 22, 24,25) or elastic-plastic material 
behaviour (14-19) are employed. The 3-D FE models are used mostly with linear-elastic 
material properties (26-28). The stress intensity factor and the configurational (also called 
material) forces represent mostly the crack driving force (14-18, 20, 21, 29).  

The aim of the work is to determine the most significant model variables that will be used 
as a foundation for the further development of the model and computational schemes. The focus 
is on the crack driving force in context of cyclic plasticity occurred in the wheel-rail contact. 
The temperature effects are not included in the presented paper and the crack is located into the 
rail. 

The most work was done as part of the PhD. thesis (30). Unless stated differently, the 
figures are directly taken from (30) without further reference. 
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1. CRACK DRIVING FORCE 

1.1 Configurational force concept 
The configurational force (also known as material force) concept can handle with un-

proportional cyclic loading, elastic-plastic material description and is chosen as a crack driving 
force; more details can be found for instance in (31). 

The basic theory and the numerical implementation of the configurational force concept 
were presented in the papers (25, 29) and will be reproduced in subchapters 1.2 and 1.3. 

1.2 Definition of the configurational force concept 
The configurational body force for linear-elastic material properties follow the 

description in the papers (32-33) and it is designated as the vector 

 Cf  , (1) 

where C  is the configurational stress tensor expressed as 

SFIC T   (2) 

with I  as the unit tensor,   as the strain energy density, F  as the deformation gradient 

tensor and S  as the first Piola-Kirchhoff stress tensor. 

F  is calculated by the displacement gradient u  as 

uIF  , (3) 

where displacement gradient u is expressed as 
X

u
u




 ; u is the displacement and X

is the position in the original configuration. 

In a FEM software can be S  calculated from the Cauchy stress T  as 

TFTFS  det . (4) 

For plastic material properties f  is designated as (34) 

)( SuIf T
elpl

  ,
 (5) 

where el is the elastic part of the strain energy density. It is the available energy to 

support crack growth while the plastic part of strain energy density pl  is used for the plastic 

deformation. The whole strain energy density is defined simply as (25): 

elpl   . (6) 

Using   instead of el  in equation (5) would give result identical with J-integral (25) 

that is not suitable measure for crack driving force in the rolling/sliding contact applications 
requiring usage of the incremental theory of plasticity (29). 

1.3 Numerical implementation of the configurational force concept 
The configurational force vector can be computed on the nodes of a finite element by 

equation (7) as (35-36): 
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 
e
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e V
ij
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II
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dVCNdVfNg

,
 (7) 

where I

i
g is the configurational force component at node I

 
by integrating the 

configurational body force f on the element e and 
IN  is the matrix containing the shape 

functions corresponding to the node I ; 
I

X j

N
, is the gradient matrix (35-36). 

The total configurational force at a node k is I

i
g  collected from all elements surrounding 

the node k. 


e

I

i

k

i
gg . (8) 

The deformation gradient F  is computed by the element shape functions
IN . The 

displacement u  at the nodes Iu  and its gradient 
jXu ,  are defined as: 

II uNu   and (9) 

II

XX uNu
jj ,,  . (10) 

2. TYPE OF THE APPLIED CONTACT LOADING 

The two contact loadings are compared - the moving Hertz pressure distribution and the 
loading applied through the wheel part loaded by a prescribed load. 

Fig. 1 shows the comparison between two modelled types of the applied loading in the 2-
D plane strain FE Model. The blue curve represents contact forces prescribed by a Hertz 
pressure distribution on the rail surface. The red lines represent calculated contact forces on the 
nodes of the meshed rail surface produced by the loaded wheel. The contact forces between the 
crack faces of the embedded surface crack can be seen as red lines parallel to the rail surface in 
Fig. 1. Here, a linear-elastic material description is used in the investigation and the full slip is 
assumed (see description of the Fig. 1 for more details). 
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 a) b) 

Fig. 1 - The comparison between distributions of the contact forces produced by the 
loaded wheel a) and by the surface forces prescribed by a moving Hertz pressure distribution 

b) on the rail surface and between the crack faces. The loaded wheel interacts with the 
embedded surface crack and produces a fluctuation of the forces near the crack normal to the 
contact surface. The surface crack is marked by a white horizontal line in the rail below the 

center of the contact patch. The loaded wheel (a) and the Hertz pressure (b) are running from 
left to right in an acceleration mode with longitudinal slip of 2 % representing a full slip case. 
Accordingly the traction orientation in the rail shows opposite to the running direction from 

right to left. The maximum contact pressure is set to Pmax = 1350 MPa in the Hertz case and 
the longitudinal contact patch size is for both cases 2a = 16 mm. A peak of Pmax = 2080 MPa 
is visible in the FE model with the loaded wheel (a) as a result of the interaction of the crack 

with the contacting wheel. 
 
Fig. 2 shows the crack driving force originating from the crack tip over the relative rolling 

time. Mode I is according to the fracture mechanics an opening mode (the crack grows parallel 
to the crack) and Mode II is a shear mode. 

 
 

  

  

mma 162  mma 162 

MPaP 1350max 

MPaP 2080max 
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 a) b) 

Fig. 2 - The crack driving forces originating from the crack tip are plotted for a FE 
model with the loaded wheel and for a FE model loaded by a Hertz pressure and traction 
forces over the relative rolling time for a) Mode I and b) Mode II b). A wheel load and a 

maximum contact pressure of 1350 MPa are prescribed as well as a longitudinal slip of 2 % 
which represents a full slip case. The 1 mm deep surface crack is modelled normal to the 
contact surface. The friction between the crack faces is assumed as 0.5. The material is 

modelled with linear-elastic properties. Differences in the computed crack driving forces are 
calculated just when the wheel interacts with the crack at a relative rolling time of 0,37 – 0,63 

s. 
 
The computing time is compared between the two models. The total computation time is 

approximately three times longer for the FE model loaded by the wheel than for the Hertz model 
using linear-elastic material properties, see Table 1. 

 
Tab 1: Comparison of the computation time of the two FE models that use linear-elastic 

material properties. 
FE Model Loaded by wheel Hertz 

DoF 15750 8976 

Abaqus time (1 CPU) 9 min. 57 s 2 min. 1 s. 

Configurational force postprocessing time (1 
CPU) 

35 min. 52 s 13 min. 37 s 

Total time 45 min. 49 s 15 min. 38 s 

 

3. 2-D FE CRACK MODEL LOADED BY SURFACE FORCES 

The preceding chapter showed numerically efficiency of the 2-D model loaded by the 
moving Hertz pressure distribution alongside with relatively small differences in the computed 
crack driving force in comparison with the FE model modelled by the loaded wheel. This 
chapter describe 2-D FE crack model loaded by surface forces (moving hertz pressure 
distribution) in more detail. The inclined crack will be modelled instead of the straight crack 
used in the principal investigation showed in the preceding chapter. 
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The model is assembled of a rectangle (rail) with an out-of-plane thickness of 10 mm. 

Plane strain conditions and thus line contact loading are assumed. The rail part is 300 mm long 
and has a height of 40 mm. The loading is prescribed as a moving Hertz pressure distribution 
without (free rolling) and with traction (full slip). The loading applied via forces at the surface 
nodes move from the left to the right (Hertz pressure distribution). The traction forces are 
oriented in opposite direction and describe an acceleration mode. The model is plotted in Fig 
3a. The system of the applied load is sketched in Figs. 3b, c. 

 
  b) c) 

Fig. 3 - Rail part with the applied load (a). The fixed boundary conditions are sketched by a 
dotted line (a). The contact patch has a longitudinal size 2a = 14mm (b, c). The friction 

coefficient µ = 0.5. 
 

The inserted crack is oriented with 30° degrees to the rail surface in the middle of the rail. 
The crack depth is taken with 0.5 mm. The local coordinate system of the crack is plotted in 
Fig 4. 
 

a) 



Number 2, Volume XIX, July 2019 

Kráčalík: Investigation of the crack driving force in Wheel-rail contact         10 

 
Fig. 4 - The coordinate system of the crack with marked Modes I and II.  A plus (+) indicates 

the positive orientation of the crack driving force. 
 

The material description uses either linear-elastic material properties or an elastic-plastic 
Chaboche material model. The set of parameters of the Chaboche (combined isotropic-
kinematic hardening) material model of rail grade R260 can be found in literature (24). 
 

Basic numerical properties of the FE model are the mesh element size and the 
vehicle/track parameters as e.g. normal load and friction coefficients. These parameters are 
investigated in chapters 4.1 – 4.4 using linear-elastic material properties. Chapters 4.5 – 4.6 are 
devoted to plastic deformation and cyclic loading. 

4. NUMERICAL INVESTIGATIONS 

4.1 Mesh dependence of the 2-D FE crack model 
The used mesh size determines strongly the accuracy of the in crack and contact 

calculations. Hence, two element sizes around the crack are compared, see Fig. 5a. The crack 
driving force is computed along several integration contours. The integration contours and mesh 
element sizes are shown in Figs. 5b, c and the computed crack driving force in the Fig. 6. 
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Fig. 5 - Geometry of the modelled crack and both mesh element sizes (a). Four integration 
contours are marked by a white colour for the coarse mesh (b) and the fine mesh (c). The 

crack tip (1st integration contour) is located in the center of the white area. 
 

The computed crack driving forces are plotted for the two examined element sizes and 
four integration contours in Fig. 6. They are plotted for Mode I in Figs. 6a, b and for Mode II 
in Figs. 6c, d; for the coarse mesh in Figs 6a, c and for the fine mesh in Figs. 6b, d. The computed 
crack driving forces in Mode I are independent from the chosen contours, see Figs. 6a and c. 
Small numerical discrepancies are visible using a coarse mesh when the crack faces are in 
contact. The integration contours are path independent for homogenous linear-elastic material 
properties (34, 37). However, pronounced path dependence is noticeable for Mode II and both 
mesh element sizes. The path dependencies are visible for Mode II only while the crack faces 
are pressed together by the contact load and can be seen at a relative rolling time of 0.37 - 0.63 
in Figs. 6c, d. Crack driving force Mode II path dependency is reported in wheel/rail contact 
problems using configurational (material) forces in the literature (18). 

 

a) 

b) c) 



Number 2, Volume XIX, July 2019 

Kráčalík: Investigation of the crack driving force in Wheel-rail contact         12 

 
Fig. 6 - The four crack driving force contours are plotted over the relative rolling time for 

Mode I (a, b) and for Mode II (c, d). The calculated crack driving forces are plotted for coarse 
mesh (a, c) and for a fine mesh (b, d). A maximum contact pressure of 800 MPa is prescribed 
in a free rolling case. Frictionless contact is assumed between the crack faces. The model uses 

linear-elastic material properties. The contour path dependency is visible for Mode II while 
the crack faces are pressed together at a relative rolling time of 0.37 – 0.63 s, see b, d. 

 
The computing time is compared between the coarse and the fine mesh. The total 

computation time is approximately 14 times longer for the fine mesh than for the coarse mesh 
using linear-elastic material properties, see Table 2. The coarse mesh is used in the following 
investigations. 
 

Tab 2: Comparison of the computing time of the two meshes using linear-elastic material 
properties. The parameters of the workstation are not listed as long we are interested in the 

relative difference of the computational time between Coarse and Fine mesh.  
Mesh Coarse mesh Fine mesh 

DoF 2658 27716 

Abaqus time (1 CPU) 46 s. 11 min. 35 s. 

Configurational force postprocessing  time (1 
CPU) 

4 min. 31 s. 64 min. 

Total time 5 min. 17 s. 75 min. 35 s. 
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4.2 Influence of the contact pressure on the crack driving force 
The contact pressure is the main loading parameters in contact applications. The influence 

of contact pressures on crack driving force is investigated with constant (17), (20) or variable 
longitudinal contact patch size (16). However, the contact patch size changes in real 
applications not only due to the contact pressure as a function of the loading but also because 
of the plastic deformation. The effect of the plastic deformation and cyclic loading are 
investigated later in chapters 4.5. In this chapter are investigated two load cases with a 
maximum contact pressure of 800 MPa, see Figs. 7a, c and with 1200 MPa, see Figs. 7b, d. The 
longitudinal size of the contact patch is taken as 14 mm. 

The contact pressure influences the computed crack driving force mainly in the Mode II, 
see Figs. 7c, d. The computed crack driving forces are negligibly influenced by the contact 
pressure in Mode I, see Fig. 7a, b. The crack growth for an inclined crack in a free rolling 
loading case is mainly Mode II dominated. 
 

 
Fig. 7 - Four crack driving force contours are plotted over the relative rolling time for Mode I 
(a, b) and for Mode II (c, d). The computed crack driving forces are plotted for a maximum 

contact pressure of 800 MPa (a, c) and for a maximum contact pressure of 1200 MPa (b, d) in 
a free rolling case. A frictionless contact is assumed between the crack faces. The FE utilizes 

linear-elastic material properties. 

4.3 Influence of the wheel/rail friction on the crack driving force 
To see the influence of the wheel/rail friction, two friction coefficients are evaluated: 0.00 

(a free rolling case) and 0.50 (in a full slip case). The results are shown for a maximum contact 
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pressure of 800 MPa and frictionless contact between the crack faces in Fig. 8. The impact of 
the crack faces friction on the crack driving force is evaluated in the next chapter. 

The computed crack driving forces are plotted for a free rolling case in Figs. 8a, c and for 
a full slip case in Figs. 8b, d. The crack driving forces are plotted for Mode I in Figs. 8a, b and 
for Mode II in Figs. 8c, d. The computed crack driving forces increase significantly for both 
Modes in a full slip case. Two peaks are calculated in the full slip case. 

 
Fig. 8 - The four crack driving force contours are plotted over the relative rolling time for 

Mode I (a, b) and for Mode II (c, d). The results are plotted for a free rolling case - wheel/rail 
friction coefficient 0.00 (a, c) and for a full slip case - wheel/rail friction coefficient 0.50 (b, 

d). The maximum contact pressure is chosen to be 800 MPa. A frictionless contact is assumed 
between the crack faces. The FE model utilizes linear-elastic material properties. 

4.4 Influence of the friction between the crack faces on the crack driving force 
Two friction coefficients are evaluated between the crack faces: 0.00 (frictionless) and 

0.50 (non-frictionless). The results are plotted for a maximum contact pressure of 800 MPa and 
a free rolling case in Fig. 9. 

The computed crack driving forces are shown for frictionless contact between the crack 
faces in Figs. 9a, c and friction between crack faces Figs. 9b, d. The computed crack driving 
forces are significantly reduced for Mode II using a friction coefficient of 0.5 between the crack 
faces, see Figs. 9b, d. The crack driving forces are practically unaffected by the crack face 
friction in Mode I, see Figs. 9a, b. 
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Fig. 9 - The four crack driving force contours are plotted over the relative rolling time for 

Mode I (a, b) and for Mode II (c, d). The results are plotted for frictionless contact between 
the crack faces (a, c) and for a friction coefficient 0.5 between the crack faces (b, d). The 

maximum contact pressure is chosen to be 800 MPa in a free rolling case. The model utilizes 
linear-elastic material properties. The computed crack driving forces are significantly reduced 

for Mode II and friction between the crack faces, see Figs. 9c, d. 
 

4.5 The effect of the plastic deformation on the crack driving force 
The influence of the material on the crack driving forces is investigated using linear-

elastic material properties and elastic-plastic material properties. Fig. 10 shows the effect of the 
plastic deformation on the computed crack driving force. The results are presented for a full 
slip case with maximum contact pressure of 800 MPa and a frictionless contact between the 
crack faces in Mode I. There is no difference in the computed crack driving forces computed 
for all integration contours between linear-elastic and elastic-plastic material properties if 
plastic deformation produced by the moving surface load does not reach the integration 
contours around the crack tip, see Figs. 10a, b at a relative rolling time of 0.30 s. The crack 
driving forces become contour path dependent when the plastic deformation intersects the 
integration contours, see Figs. 10b, d at a relative rolling time of 0.40 s; the same conclusion 
was drawn in (3) and  the FE model is supposed to be verified. In more general, the dependency 
of crack driving force contours on the plastic deformation is reported for incremental plasticity 
in the literature, see e.g. (32, 38). 
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 c) d) 
Fig. 10 - The crack driving force for all four contours is plotted over the relative rolling time 
for Mode I using linear-elastic material properties (a) and elastic-plastic material properties 

with combined isotropic-kinematic hardening behaviour (b). The results are plotted for 
frictionless contact between the crack faces, a maximum contact pressure of 800 MPa is 

assumed for the full slip case. The crack driving forces are contour independent as long as a 
plastic deformation produced by the surface loading does not intersect the integration 

contours at about 0.37 s. The contours are plotted over the plastic deformation at 0.3 s and 0.4 
s rolling time see Figs. 10 c, d. 

 
The computed crack driving forces change its magnitude across the integration contour 

due to the plastic deformation, see Figs. 10b, d. The 4th integration contour encloses the biggest 
area of the material (contours are counted from the crack tip which is marked by a white dot in 
Figs. 10c, d). The highest crack driving force is computed for the 4th integration contour. Due 
to the strong plastic deformation by the surface load the bigger contours produce unrealistically 
high crack driving forces and on the crack tip contour remains comparable between all regarded 
cases. 

4.6 Cyclic analysis 
A cyclic compression/tension single element test with a controlled stress amplitude was 

conducted using a Chaboche material model of rail grade R260 in order to investigate the 
ratcheting response of the material model; Fig. 11. The used material parameters are listed in 
the literature (24). 
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 a) b) 

Fig. 11: The cyclic compression/tensile single element test with a controlled stress 
amplitude of 450 MPa (a) and of 500 MPa (b). The stress ratio of the experiment is R= -2 
(asymmetric alternating stress). A stabilisation of the ratcheting behaviour (stable hysteresis 
loop) is reached quickly after four loading cycles with a stress amplitude of 500 MPa (b). 
Overall one hundred loading cycles were performed. 
 

A stable hysteresis loop is established after a small amount of loading cycles, see Fig. 10. 
A stable hysteresis loop is established using the stress amplitude of 450 MPa approximately 
after seven loading cycles. Four loading cycles are necessary to produce a stable hysteresis 
curve using the stress amplitude of 500 MPa. Overall one hundred loading cycles were 
simulated. 

 
Ten load cycles of the moving Hertz pressure distribution over a rail part are performed 

assuming a full slip case. The maximum of the Hertz pressure distribution is set to 800 MPa. 
The results are shown in Fig. 12. 

 
 a) b) 

Fig. 12: The crack driving force is plotted for ten load cycles rolling with a moving Hertz 
pressure and a maximum contact pressure of 800 MPa in a full slip case and frictionless 

contact between the crack faces for Mode I (a) and Mode II (b). The dashed lines mark the 
stabilisation of the computed crack driving force after about 10 rolling cycles. Constant values 

are achieved in the 9th rolling cycle for the given loading and material properties. One load 
pass is performed per second. 

-0,015 -0,010 -0,005 0,000
-800

-600

-400

-200

0

200

400

 

 

S
tr

es
s 

(M
P

a)

Strain (-)

 R260

Stress amplitude 500 MPa

T
en

si
le

C
om

p
re

ss
io

n

-0,015 -0,010 -0,005 0,000
-800

-600

-400

-200

0

200

400

C
om

pr
es

si
on

 

 

S
tr

es
s 

(M
P

a)

Strain (-)

 R260

Stress amplitude 450 MPa

T
en

si
le

0 1 2 3 4 5 6 7 8 9 10
-20000

-16000

-12000

-8000

-4000

0

4000

8000

Mode I

C
ra

c
k

 d
ri

v
in

g
 f

o
rc

e 
(J

/m
2 )

Relative rolling time (s)

 1st(Tip)
 2nd

 3rd

 4th

 

0 1 2 3 4 5 6 7 8 9 10
-20000

-16000

-12000

-8000

-4000

0

4000

8000

Mode II

C
ra

c
k

 d
ri

v
in

g
 f

o
rc

e 
(J

/m
2 )

Relative rolling time (s)

 1st(Tip)
 2nd

 3rd

 4th



Number 2, Volume XIX, July 2019 

Kráčalík: Investigation of the crack driving force in Wheel-rail contact         18 

The computed crack driving forces show in nearly all cases similar values after the 9th 
rolling cycle for the given loading and the used material properties. The highest changes of the 
crack driving force are visible in the first three loading cycles, see Fig. 12. The highest change 
of the crack driving force corresponds with the ratcheting behaviour observed in the first cycles 
of the cyclic compression/tensile single element test, see Fig. 11. This observation follows the 
statement that the bulk configurational force is proportional to the gradient of the plastic strain 
(in context of the incremental theory of plasticity) as (34): 

X

e
f pep




  , (11) 

where  is the Cauchy stress tensor and Xep  / is the gradient of the plastic strain 

respecting the reference configuration. 
 
A stabilized crack driving force after a certain number of cycles, which are still 

numerically affordable, is a prerequisite to predict a crack growth rate in further cycles (the 
crack growth rate calculations have been already presented in (25)). 

 CONCLUSIONS 

The crack driving forces for surface cracks under rolling sliding wheel/rail contact are 
calculated based on the configurational force concept. The investigations use a 2-D FE crack 
model to describe the wheel/rail contact situation. Two model variants that represent the contact 
load are compared: A moving Hertz pressure and a modelled wheel part which is rolling/sliding 
along the rail part. The investigations reveal differences in the computed crack driving forces 
between the two models because of the interaction of the crack with the contacting wheel. Some 
basic variations for investigating e.g. mesh dependence of the FE model, influence of the 
contact pressure and wheel/rail as well as crack face friction are carried out using linear-elastic 
material properties. The crack driving forces for Mode II exhibit a dependency on the 
integration contour even in the case of a frictionless contact between the crack faces. The 
friction coefficient between the crack faces reduces in all investigated cases the computed crack 
driving force, on the other hand the wheel/rail friction increases the computed crack driving 
forces. A higher contact pressure produces a higher crack driving force in Mode II while crack 
driving forces for Mode I are practically unaffected. 

The effect of the plastic deformation on the computed crack forces is investigated using 
a Chaboche (combined isotropic-kinematic hardening) material model of rail grade R260. The 
crack driving force is path dependent when the plastic deformation due to the rolling/sliding 
contact intersects the area enclosed by the integration contours.  

 
The following are concluded from the investigations: 

 the contact loading should be applied through a rolling/sliding wheel part rather than by 
moving Hertz pressure distribution, 

 it is reasonable to evaluate the computed crack driving force at the crack tip, 
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 if a crack is introduced in a model with elastic-plastic material behaviour, it needs ten cycles 
to reach a steady state around the crack but a steady state is dependent on the underlying 
material model. From them (ten cycles) a stable crack driving force can be assumed for all 
further cycles. 
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