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A PARAMETRIC IDENTIFICATION OF STOCHASTICALLY 

LOADED STRUCTURES AND ITS SOFTWARE SUPPORT 
 

Bohuš Leitner1 

Summary: The paper contains descriptions of one possible approach of an identification of 
stochastically loaded structures. The purpose of this approach is to find an algorithm of a 
forecasting control of their working in real working conditions. It deals with a proposal 
of an application of vector time series moving average models (VARMA). Their 
parameters are possible to determine using the nonlinear modification of the least 
squares method. The paper contains a main theoretical principle of solved area and its 
application on a real testing structures. The main purpose of practical apllication is to 
identify the important parameters and to examine their relations to one another while 
gantry crane structure was modelled.  

Key words: stochastic load, parametric identification, vector autoregressive model VARMA, cranes, 
software tools - ArmaGet, Matlab, ARMASA Package. 

 

1. INTRODUCTION 
It is well known that working of majority of machines is significantly influenced by different 

kinds of stochastic loads. There is possible to respect the tendency a limitation of energetically and 
material consumption to oversize their dimensions. But it is necessary to look for some more 
ingenious methods to deal with this problem. Some of them are the ways to control (influence) the 
working of a mechanical system in respect to their proposed behaviour. But it needs to follow of the 
system behaviour in the real time and to make some necessary controlling interventions. Gantry 
crane has been applied for moving container over variable paths within restricted areas. The review 
of the literature has shown that most of the previous studies focused on optimal ways to control the 
crane trolley position so that the swing of the hanging container can be minimized. Using the 
models with the full-sized or reduced-sized gantry crane in the laboratory is not new, but there are 
still constrains which have not solved completely.  

Firstly, until now large gantry crane has specially designed for loading and unloading 
containers from the ships with 10 to 18 rows. However, in the future, there are significant needs for 
bigger gantry crane with 22 or higher rows. Therefore, how to change the frame length of gantry 
crane, which influences other elements, is a more considerable problem. 

Secondly, the full-sized gantry crane with wind effect has not considered thoroughly in the 
studies results. The whole structure of gantry crane is divided into two sections: the moving 
substructure and the static framework. Following the balance of forces, the relationship between the 
fixed framework and the moving sub-structure can be simplified into time-variant moving point 
loads. During the operation of the gantry crane system, the moving substructure is subjected to wind 
flow; it may increase vibration or suddenly deflect its motion in wind flow around. Therefore, to 
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understand the dynamical behaviours of the hanging container under wind excitation, the basic wind 
phenomena needs to be clearly understood. In addition, designing a gantry crane includes designing 
structure, testing vibration, making gantry crane, installing controller, and redesigning. In these 
steps, controllability has been ignored, even though this is an important parameter in operation of 
gantry crane in practical (1). 

2. DYNAMIC SYSTEMS IDENTIFICATION AND AUTOREGRESSIVE MOVING 
AVERAGE MODELS  

The procedure of dynamic modelling is shown in Fig.1. The inputs for system are 
measurements including wind pressure, motor torque, etc., while the inputs for system reaction are 
displacement, strain, stress. To model the system reaction as the output signal from the system 
inputs, a transmission through the object has been modelled.  

 
 
 
 
 
 
 
 
 
 
 
 

Generally, process identification, which catches some of the most important properties of the 
process behaviour, is based on step response analysis. System identification, as shown in Fig. 2, can 
be achieved when the inputs as well as the output signals are available as measured quantities.   

There are two kinds of models including parametric model and non parametric model. The 
parametric model (white box models) is the model in which the transmission of the signal through 
the object is supposed to be known and can be described by differential equations.  

In non parametric model, on the contrary, modelling geometrical and the physical structure of 
a system can not be established except by the sense of regression and/or correlation analysis 
(behaviour model). System identification means that determining the regression or correlation 
coefficients. Non-parametric models are called black box models because system identification is 
based not only on measurements but also on mechanical model.  

 
 
 
 
 

System input: 
- Internal forces 
- External forces 

Determination of 
deterministic input 

quantises 

Object: 
- Object geometry 
- Material parameters 
- Material behaviour 

System reaction: 
- Rigid body 
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Determination of 
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Deviations between computed 
and measured system reaction 

Evaluation methods Interpretation 

Fig.1 - Procedure of Dynamic Systems Modeling 
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There is necessary to identify such a system at first. It means to get its statistically adequate 

mathematical model. There is possible by using this model and by developing sufficient fast and 
correct machine control system and suitable software to forecast behaviour of system in the near 
future. We can get in such a way the possibility of making some controlling corrections before the 
system reaches an unstable region.  

It was found the as a suitable solution for a stochastically loaded mechanical structure 
identification can be used the autoregressive moving average models ARMA or their vector 
modification named VARMA (Vector Autoregressive Moving Average) models (2), (5), (6). A 
stochastically loaded part of structure and its behaviour during time can be described by using of 
scalar autoregressive moving average models (8). Its identification (stochastically adequate model) 
but gives just an information about its own behaviour without a relationship to the whole structure 
during acting of different working regimes.  

We have found as one of possible ways the use of autoregressive moving average models 
ARMA and its adaptive modifications to improve accuracy of stochastically loaded mechanical 
structures identification. These models are suitable for stochastically loaded mechanical structures 
identification which outputs are reflections on stochastically loads in more number of points – 
vector time series. 

3. ALGORITHM OF ADAPTIVE “ARMA” MODELS AND ITS APPLICATION IN 
PARAMETRIC IDENTIFICATION PROCESS 

Algorithm for adaptive modelling [8] is based on a gradient method (steepest descent method) 
and can also be used for non-stationary processes. Model is able to adapt itself to the changes in 
process character. It is supposed that n-th order Vector Autoregressive model (2) is at any given 
time defined by the vector of its coefficients: 

=a 1 2( ) [ ( ), ( )... ( )]Tnk a k a k a k          (1) 

Using the steepest descent method, point of least squares Σεt2 is searched. Search begins with 
an initial guess as to where the minimum point of Σεt2 may be.  

Minimal sum of squares S is  

( ) 02 == ∑ t
kk aa

S ε
∂
∂

∂
∂

.  (2) 

The updated values of AR model coefficients are obtained from [7,8] 

Fig. 2 - Parametric and Non-parametric identification 
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where  

2 . ( 1)T
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a

∂ ε
∂

⎡ ⎤= − −⎣ ⎦X   

is the gradient direction and positive value of η in equation (3) scales the amount of readjustment of 
the model coefficients in one time step. Then, the iterative corrections of coefficients are 

( 1) ( ) . . ( 1)T
tk k e kμ ⎡ ⎤+ = + −⎣ ⎦a a X .  (4) 

In (8) adaptive AR models were extended to include also MA part to adaptive Autoregressive 
models with moving average. To achieve this, vector of moving average coefficients must be 
considered      

21( ) [ ( ), ( )... ( )]T
nk b k b k b k=b .                                    (5) 

Same procedure as for vector of AR coefficients was used to derive formula (4) for iterative 
corrections’ calculations of MA part coefficients 

[ ])1(..)()1( −+=+ kkk T
t εεμbb  ,         (6) 

where εt is error from the last iterative step and ε(k-1) is vector of preceding errors 

[ ]1 2 1( 1) , , ... T
k k k nk ε ε ε− − − +− =ε          (7) 

Another problem arises when deciding value of convergence constant. It influences 
converging speed of algorithm and also its sensitivity to random or systematic changes in process 
environment character. Procedure for calculating μ constant, based on experimental work [8] was 
presented for use in area of adaptive control 

.k kCμ ϕ β= +    and   2
1

1 11 .k k tC C ε
α α−

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

,                (8) 

where α is constant describing system memory, it influences model sensitivity to random process 
changes, β is constant characterising system dynamics and ϕ is constant for correction of numeric 
calculation errors. Actual values of these constants can be chosen so the model sensitivity to 
stochastic events and response speed to process character changes are as required. 

 
The advantages of adaptive ARMA models: 

• they can show the physically base of problem studied (this means that they to obtain the 
natural frequencies  and natural modes of vibrations) (9), 

• they can describe a wanted accuracy of real system (10) , (6), (7), 
• the mathematical apparatus of methods is relative simple (4). 

4. NEW SOFTWARE TOOL FOR PARAMETRIC AND ADAPTIVE IDENTIFICA-
TION OF DYNAMICS SYSTEMS 

The creation of a software support which is able to identify some stochastic loaded parts of 
structures is just the firs step for applying of the forecasting control of mechanical systems.   
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The final form of an identification software was created in such a way that it enables the use 
of an identification library and to realise the own identification of system parameters. The result of 
a proposed application of this methodology is software tool - ArmaGet (Fig.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This developed software tool is able to create an adequate mathematical model for describing 

a matrix model of a tested stochastic loaded mechanical system. It contains users menu, which apart 
from basic functions with file, configurations, works with windows and help functions and contains 
two submenus – submenu of “Simulation” and submenu of “Identification”.  

The heart of the program is submenu “Identification”, by means, which is possible to make 
selection of the identification method and way of chosen time series, whereupon it is possible to use 
either adaptive algorithm of time series identification or make identification using non-linear least 
squares method. Item “Simulation” enables adjustment and conversion of incompatible input files 
of time series to compatible ones and simulation (generation) of time series basing on given AR or 
ARMA models order and parameters with possibilities of mean and dispersion selection of 
simulated series.  

Because of the above stated reasons, procedure based on theory of adaptive and self-learning 
systems is used for describing system behaviour in real time. 

5. VERIFICATION OF PROPOSED APPROACH OF IDENTIFICATION ON THE 
REAL STRUCTURES 

5.1 Case A: Identification of Crane jib model parameters    
Main problem in identification and modelling by autoregressive models is finding coefficients 

of AR and MA parts and determination of adequate order of the model. Coefficients of AR model 
can be simply found using least square method (LSM) [4]; for universal ARMA models non-linear 
LSM must be used. Both methods use matrix calculations for finding needed coefficients, which are 
very time-consuming and therefore not usable for on-line process, control or identification and they 
also can not be used for modelling of non-stationary time-varying process. 

There was developed a FEM (Finite Element Method) model of a crane jib (Fig.4) and 
in MATLAB-environment was realised simulation of its loading. The acting loads were described 
as a stochastic excitation.   

Fig. 3 - Main window of created software tool - ArmaGet 
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There were used as an application of a numeric Crank-Nicolson method (10) of direct 

integration the deformation of all nodes of model (20 nodes). The time intervals were selected as Δt 
vz = 0.01 s.  Resulting deformational outputs were organized in corresponding vector time series. 
There was selected in a testing example a vector time series of deflection in “z” axe direction.  

The main window of inputs for determination of vector time series in direction of “z” axe is 
introduced on Fig.5 and results of its identification are introduced on Fig.6 (an optimal order of 
model - VARMA (6,5)).  

 
 
 
 
 
 
 
 
 
 
 
The verification of developed identification support – software tool ArmaGet was realised by 

three different ways. At first it was a comparison with results of computing module Solver, from 
MS Excel. The second way to verify the correctness of software support was based on a comparison 
of obtained results with the application of software package ARMASA [3], working in Matlab© 
environment. As a third way of verification was chosen approach to generate new vector time series 
derived from the obtained parameters of VARMA models. This way means the simulation of time 
series with determined parameters and their “back way” identification. This option is available by 
menu item Simulation→ Model VARMA from developed tool ArmaGet.  

In Tab.1 are results from identification through software tools by comparing values of sums of 
squares. In Tab.2 are presented results from a comparison of the application for three orders of 
VARMA models - namely orders (6,5) (8,7) and (10,9). 

 
 

Fig.4 Testing model of crane jib 

Fig. 5 - Settings of input parameters 
for identification process 

Fig. 6 - Results of a crane jib upper 
boom identification 
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Tab.1 - The comparison of results - ArmaGet, ARMASA Package, Excel - Solver 

 VARMA(6,5) VARMA(8,7) VARMA(10,9) 
ArmaGet ARMASA Package Excel - Solver 

Node 1 7,6591.10-6 7,8991.10-6 1,8398.10-7 
Node 2 1,0659.10-5 1,1243.10-5 1,1953.10-5 
Node 3 1,1204.10-5 1,1868.10-5 1,1307.10-5 
Node 4 1,4823.10-5 2,1467.10-5 2,0833.10-5 
Node 5 2,5955.10-5 4,2690.10-5 3,5906.10-5 
Node 6 4,1240.10-5 6,4402.10-5 6,2980.10-5 

Tab. 2 - The verification of  identification results for different orders of VARMA models 

 VARMA(6,5) VARMA(8,7) VARMA(10,9)
ArmaGet Excel ArmaGet ARMASA ArmaGet ArmaGet

Node 1 7,6591.10-6 1,8398.10-7 7,6591.10-6 7,8991.10-6 7,8985.10-6 7,8482.10-6 
Node 2 1,0659.10-5 1,1953.10-5 1,0659.10-5 1,1243.10-5 1,0365.10-5 1,0402.10-5 
Node 3 1,1204.10-5 1,1307.10-5 1,1204.10-5 1,1868.10-5 1,0424.10-5 1,0497.10-5 
Node 4 1,4823.10-5 2,0833.10-5 1,4823.10-5 2,1467.10-5 1,4028.10-5 1,4183.10-5 
Node 5 2,5955.10-5 3,5906.10-5 2,5955.10-5 4,2690.10-5 2,2255.10-5 2,5761.10-5 
Node 6 4,1240.10-5 6,2980.10-5 4,1240.10-5 6,4402.10-5 3,7822.10-5 3,5980.10-5 

 

For more information on selected practices and other functional outcome assessment prepared 
software support can be found e.g. in (2, 6, 8).  

 
5.2 Case B: Parametric Identification of the Large Gantry Crane System 

a) Parameters of Gantry Crane model: analytical model of examined gantry crane is on 
Fig.7, where XY is the fixed coordinate system and (Xˆ,Yˆ) is the trolley coordinate system, which 
moves with the trolley.  

 

 

 

 

 

 

 

 

 

The equations of motion of a two-dimensional gantry crane are obtained by Lagrange’s 
equation as follows (1): 

( ) 2. . .cos .sin . 2. .cos . .sin TM m x m l m l C x m l m l Fθ θθθ θ θ θ θθ+ + + + + − =&& &&& & &&& &      (9) 
2 cos 2 sin 0ml ml x mll mglθ θ θ θ+ + + =&&& &&&          (10) 

Fig. 7 Dynamic parameters of crane model 
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( ) 2sin cos H
l l lM m l m x C l ml mg Fθ θ θ+ + + − − =&& & &&&         (11) 

From equations (9) and (11), the functions bellows are received 

( ) 2cos sin 2 cos sinTC x k F M m x ml m l m l mlxx mx xe θθ θ θ θ θθ− = − + − − − +&& &&& & && &&         (12) 

( ) 2sin cosHC l k F M m l m x ml mgll mi le θ θ θ− = − + − + +& && &&&        (13) 

where Cx, Cl denote damping on x - axis and along cable; kmx kmi denote stiffness along cable. We 
assume that we observe the set of outputs and inputs in form 

( )
( )

20 0 cos sin 2 cos sin
20 0 sin cos

Cx
Tx F M m x ml m l m l mlkxe xmx

H Cll F M m l m x ml mglle
kmi

θθ θ θ θ θθ

θ θ θ

⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎡ ⎤− + − − − +−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − + +⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦

−⎢ ⎥⎣ ⎦

&& &&& & && &&

& && &&&
   (14) 

and thus we obtain equation in form 
.T =φ θ y .      (15)  

The experimental model used for this case is shown in Fig. 8.  
 
 
 
 
 
 
 
 
 
 
 
 
Firstly, the container moves along the y -axis, from A point to B point, then travels along the x 

-axis, from B point to C point, and finally moves along the y-axis, from C point to D point. The 
experimental model with using microcontroller is defined in Fig. 9, where driving forces T

xF and 
H

lF is installed by joysticks.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 - Transportation sequence of the container 

Fig. 9 - Experimental model of gantry crane 
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Displacement of trolley and length of rope are obtained by two encoders.   
The input parameters are as follows: length of rope l = 1,11 [m], acceleration of gravity g = 

9,81 [m/s2 ], mass of trolley M = 100 [kg], mass of container m = 60 [kg]. 

Results: Result for computing values of the identification parameters are in Tab.3 and the 
courses of driving force on x-axis and driving force along cable (in experiment by using joystick) 
for realized 4 basic cases (1 to 4) are referred to Figs. 10-13.  

Tab.3 - Result for computing values of the identification parameters 
Case 1 : Results Case 2 : Results Case 3 : Results Case 4 : Results 

2,417
0,42231.
0,749

0,350

Cx
kmx e
Cl
kmi

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

 

0,943
0,15631.
0,087
0,033

Cx
kmx e
Cl
kmi

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

 

9,600
4,47531.
3,899

0,436

Cx
kmx e
Cl
kmi

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥−
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1,264
0,21151.
0,038
2,537

Cx
kmx e
Cl
kmi

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

 

 

 

Depending on the experiment results, system identification is used to identify parameters of 
gantry crane including damping and stiffness matrices. MATLAB program is also applied, with the 
least squares method. 

Fig. 11 - Driving force for Case 2 Fig. 10 - Driving force for Case 1 
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Depending on the experiment results, system identification is used to identify parameters of 
gantry crane including damping and stiffness matrices. MATLAB program is also applied, with the 
least squares method [10]. However, the least squares method can not be regarded as a suitable 
algorithm for parametric identification of the large-scale crane systems. 

6. CONCLUSIONS 
It was shown that by using of a suitable mathematical apparatus can forecast the future 

behaviour of a mechanical structure. The vector time series (Vector Autoregressive Moving 
Average Models – VARMA) were chosen as a suitable mathematical apparatus and the suitability 
of this choice were proven by use of computer simulation of stochastically excited mechanical 
systems (2). Procedure of statistically adequate models is getting concentrated in principle of output 
signals substituting (using non-linear least square method) with models of gradually increasing 
order until the decreased sum of squares becomes statistically non-significant on a chosen level of 
significance. Physical meaning of such a procedure is in that we are trying to substitute the system 
with a model with the lowest number of statistically significant modes of vibrations. During this 
procedure, each increase of model order by two introduces (a further degree of freedom). If its 
contribution in not significant, the former model is taken as statistically adequate. In detail is 
involved strategy described in (8). 

Fig. 13 - Driving force for Case 4 
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Fig. 12 - Driving force for Case 3 
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It introduces problems were proposed and verified in a frame of grant research, where some 
possible applications of the proposed identification procedure were investigated. It was namely a 
connection of proposed identification procedure with systems of complicated machine structures 
solution using FEM.  

In this paper, we have proposed a modelling method by using virtual simulation to identify 
the important parameters of large-scaled gantry crane. Depending on the experiment results, system 
identification is used to identify parameters of gantry crane including damping and stiffness 
matrices. MATLAB program is also applied, with the least squares method (10). However, the least 
squares method can not be regarded as a suitable algorithm for parametric identification of the 
large-scale gantry crane system, because the nonlinear character of system is too high. 
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