PŘÍČNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ

SIDE TILT STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS

Leopold Hrabovský¹

Anotace: Příspěvek pojednává o výpočtu stability a plovatelnosti plovoucí otoče plovoucích pásových dopravníků s koncovými plováky. Plovoucí otoč je sestavena ze dvou plováků válcového tvaru a rámové konstrukce.

Klíčová slova: Plovoucí pásový dopravník, válcový plovák, stabilita, plovatelnost.

Summary: The article dealt with stability calculation and floatation floating veer floating belt conveyor with end floats. Floating face round is make-up from two float cylindrical shape and frame construction.

Key words: Floating belt conveyor, cylindrical float, stability, buoyancy.

1. ÚVOD

Dobývání nerostných surovin ve formě písků a štěrkopísků z prostor pod hladinou vody se z historického pohledu původně nazývalo vodním bagrováním a zahrnovalo komplex prací spojených s rozpojováním, dopravou a skladováním těženého nerostu. V současné době se výše specifikované operace provádějí hornickou činnosti prováděnou hornickým způsobem na povrchu.

Snaha o snížení ekonomických nákladů spojených s dopravou těživa na břeh těžebního jezera vede k celkové automatizaci bagrovacího procesu. Automatizace tak s sebou přináší řadu technických zařízení, které umožňují kontinuální směrování těživa od plovoucího těžebního zařízení ke stacionárním třídírnám instalovaným na břehu těžebního prostoru. Ve vnitrozemské plavbě se proto uplatňují kromě korečkových, sacích a drapákových plovoucích bagrů i technická plavidla, jako jsou např. plovoucí úpravny štěrkopísků, lžícové bagry, plovoucí jeřáby a v neposlední řadě také plovoucí pásové dopravníky.

Při projektování technických plavidel je nezbytné docílit požadovaných konstrukčních a rozměrových parametrů proto, aby tato zařízení byla dostatečně stabilní a zajišťovala plavební schopnost v celé oblasti své působnosti pro určitou plavební oblast. Z široké škály technických plavebních požadavků kladených na dané plovoucí zařízení je nezbytně nutno zajistit plovatelnost a dostatečnou stabilitu. Plovatelnost je definována schopnosti plavidla setrvat v rovnovážném stavu při jeho umístění na vodní ploše. Stabilita je, všeobecně definována jako, způsobilost plavidla se po vychýlení vrátit do své výchozí rovnovážné polohy, pokud na něj přestanou působit vnější síly statického či dynamického charakteru.

¹ doc. Ing. Leopold Hrabovský, Ph.D., Vysoká škola báňská - Technická univerzita Ostrava, Fakulta strojní, Ústav dopravních a procesních zařízení, 17. listopadu 15/2172, 708 33 Ostrava - Poruba, Tel.: +420 597 323 185, E-mail: <u>leopold.hrabovsky@vsb.cz</u>

2. POPIS A ZÁKLADNÍ ROZMĚRY PLOVÁKOVÉHO TĚLESA

Výpočet stability a plovatelnosti plovoucího tělesa, plovoucí pásové dopravní trasy sestavené z pásových dopravníků s koncovými (podpěrnými) plovákovými tělesy válcového tvaru (obr. 2), bude proveden pro těleso samostatně plující na hladině těžebního jezera. V následujícím výpočtu není uvažováno s reakcemi od dopravníků, které jsou k plovoucímu tělesu připojeny a které stabilitu tělesa zlepšují.

Zdroj: Ing. Tomáš Straka

Obr. 1 - Plovákové těleso válcového tvaru plovoucí pásové dopravní trasy

Plovoucí otoč dle obr. 1 je tvořena dvěmi plováky, spojovací konstrukcí a nástavbou. Pro výpočet vztlaku budou uvažovány pouze plováky, vztlaková síla spojovací konstrukce (tzv. kříže) je malá a bude zanedbávána. Půdorysný rozměr plováku válcovitého tvaru je, dle obr. 3, volen o průměru 1600 mm a délce 4030 mm. Pro výpočet stability je důležitá poloha těžiště otoče G (střed hmot). Na otoč působí tíha samotné konstrukce a tíha pásových dopravníků. Předpokládáme, že všechny tyto síly působí v ose symetrie a i těžiště G tedy leží na ose symetrie ve výšce h_G [m] nad dnem plováků.

Zdroj: Ing. Tomáš Straka

Obr. 2 - Plovákové těleso válcového tvaru plovoucí pásové dopravní trasy

Hodnoty pro výpočet polohy těžiště G byly převzaty z dokumentu [1, kap.7.3, str.87],

 $m_o = 4055 \text{ kg}$ - celková hmotnost plovoucí otoče, $h_o = 800 \text{ mm}$ - volená poloha těžiště o [3], blíže viz obr.5.22, h_{pdh} [m] - poloha působiště poloviny tíhy pásového dopravníku v horním uložení (výsyp), h_{pdd} [m] - poloha působiště poloviny tíhy pásového dopravníku v dolním uložení (násyp)), $m_{dm} = 694 \text{ kg}$ - maximální hmotnost dopravovaného materiálu.

Polohu h_G [m] těžiště G celé otoče je pak možno určit dle vztahu (3).

Dle [1, str.87] je volena poloha působiště poloviny tíhy pásového dopravníku v horním uložení (výsyp) $h_{pdhh} = 3447$ mm, vzhledem k tomu, že výška plováku hranolovitého tvaru je dle [1, str.87] $h_{ph} = 1170$ mm, je možno polohu působiště poloviny tíhy pásového dopravníku v horním uložení plovoucí otoče s plováky válcového tvaru vyjádřit, viz (1).

Zdroj: Autor

Obr. 3 - Plovoucí otoč, rozměrový náčrt

$$h_{pdh} = h_{pdhh} - h_{ph} + h_{pv} = 3447 - 1170 + 1600 = 3877 \text{ mm}$$
 (1)

kde h_{pv} [m] - výška plováku válcového tvaru je, dle obr.5.3, volena h_{pv} = 1600 mm.

Dle [1, str.87] je volena poloha působiště poloviny tíhy pásového dopravníku v dolním uložení (násyp) $h_{pddh} = 1527$ mm, vzhledem k tomu, že výška plováku hranolovitého tvaru je dle [1, str.87] $h_{ph} = 1170$ mm, je možno polohu působiště poloviny tíhy pásového dopravníku v horním uložení plovoucí otoče s plováky válcového tvaru vyjádřit, viz (2).

$$h_{pdd} = h_{pddh} - h_{ph} + h_{pv} = 1527 - 1170 + 1600 = 1957 \text{ mm}$$
(2)

$$h_{G} = \frac{m_{o} \cdot h_{o} + \frac{1}{2} \cdot (m_{pd} + m_{dm}) \cdot h_{pdh} + \frac{1}{2} \cdot (m_{pd} + m_{dm}) \cdot h_{pdd}}{m_{o} + m_{pd} + m_{dm}} = \frac{4055 \cdot 800 + \frac{1}{2} \cdot (4480 + 694) \cdot 3877 + \frac{1}{2} \cdot (4480 + 694) \cdot 1957}{4055 + 4480 + 694} = 1987 \text{ mm}$$
(3)

Těžiště otoče je podle výpočtu téměř 0,39 m ($h_G - h_c = 1987 - 1600 = 387$ mm) nad horním povrchem plováků a cca 1,1 m ($h_G - h_p = 1987 - 888 = 1099$ mm) nad hladinou.

3. PŘÍČNÁ STABILITA PLOVOUCÍHO TĚLESA VÁCOVÉHO TVARU

Výchozí mezní stav, označen jako 1), je docílen, dosahuje-li ponor h_p [m] válcového plováku právě poloměru plováku r [m]. Rovina vodní hladiny v jistém specifickém okamžiku

Hrabovský - Příčná stabilita plovoucího tělesa válcového tvaru plováků

naklonění plovoucí otoče (o úhel α [deg]) splývá s úhlopříčkou plováku (přímka procházející horním rohem pravé svislé stěny a spodním rohem levé svislé stěny plováku), viz obr. 4.

Zdroj: Autor

Obr. 4 - Volba souřadného systému a základní rozměry plováku

Z obr. 5 je zřejmé, že vedeme-li řez (v bokorysném pohledu) středem objemu zanořené části plováku, získáváme obrazec tvaru pravoúhlého trojúhelníka. Úhel α [deg] vychýlení plováku z rovnovážné polohy je možno vyjádřit vztahem (4) s využitím obr. 4.

$$\alpha = \operatorname{arctg}\left(\frac{d}{a}\right) [\operatorname{deg}] \tag{4}$$

Zdroj: Autor

Obr. 5 - Řez středem zanořeného objemu plováku

Ve voleném souřadném systému, dle obr. 4, je možno x-ovou souřadnici těžiště objemu zanořené části plováku (průmět plochy do roviny je definován trojúhelníkem) vyjádřit vztahem (5) a y-ovou souřadnici vztahem (6).

$$x_{v} = \frac{a}{2} - \frac{5}{16} a [m]$$
(5)

$$y_v = \frac{3}{4} r [m]$$
 (6)

Rameno výtlaku v [m] je možno, na základě obr. 6, popsat vztahem (7).

$$\mathbf{v} = (\mathbf{x}_{v} + \mathbf{y}_{v}. \, \mathbf{tga} - \mathbf{h}_{G}. \, \mathbf{tga}). \, \cos\alpha \, [\mathbf{m}]$$
⁽⁷⁾

Úhel α [deg] viz vztah (4) je zároveň horní mezní hranicí úhlu vychýlení plováku z

Ročník 5., Číslo I., duben 2010

rovnovážného stavu pro případ 1).

Stav 2), který bude následně popisován, je stavem, kdy je zanoření, vychýleného z rovnovážné polohy, válcového plováku rovno právě poloměru plováku, přičemž plovák je z rovnovážné polohy vychylován v rozmezí úhlu $\alpha \ni \{0; \alpha_1 = 21,65 \text{ deg}\}$, což odpovídá vychýlení plováku od nulové hodnoty (horizontální poloha) až po stav znázorněný na obr. 4. Při naklánění plováku ve zmíněném intervalu, je zachována plocha zanoření, tj. součet ploch S₁ [m²] a S₂ [m²] musí být roven ploše S [m²] (plocha zanoření obou plováků v rovnovážném stavu plovoucí otoče).

Zdroj: Autor

Obr. 6 - Určení ramene výtlaku pro stav dle obr. 4

Pro výpočet souřadnic těžišť jednotlivých ploch je nezbytné stanovit velikosti výšky ploch S₁ [m²] a S₂ [m²], které se mění v závislosti na úhlu naklonění α [deg] tzn., že je zapotřebí vyjádřit výšky h_L [m], h_P [m] a h_{L-P} [m] jako funkce úhlu α [deg].

Zdroj: Autor

Obr. 7 - Souřadný systém a základní rozměry nakloněného plováku

Z obr. 7 vyplývají tyto následující vztahy, výška trojúhelníku h_{LP} [m] viz (8), výška obdélníku h_P [m], viz (9) a výška kruhové úseče h_L [m] viz (10).

 $h_{LP} = a. tg\alpha [m]$ (8)

$$h_{\rm P} = \frac{d}{2} - \frac{h_{\rm LP}}{2} \, [\rm m] \tag{9}$$

Hrabovský - Příčná stabilita plovoucího tělesa válcového tvaru plováků

Ročník 5., Číslo I., duben 2010

$$h_{L} = h_{LP} + h_{P} = \frac{d}{2} + \frac{h_{LP}}{2} [m]$$
(10)

Nyní je zapotřebí stanovit souřadnice těžiště ploch $S_1 [m^2]$ a $S_2 [m^2]$. Souřadnice ve směru x-ové osy jsou dány jednoduchými vztahy pro určení těžiště obdélníku (plocha $S_1 [m^2]$) a těžiště pravoúhlého trojúhelníku (plocha $S_2 [m^2]$). Určení polohy souřadnice ve směru y-ové osy je u válcového plováku složitější, poněvadž průmětem je kruhová úseč, na více zanořené straně navíc přesahující poloměr r [m] plováku.

Souřadnice $\{x_1, y_1\}$ těžiště plochy S₁ [m²] uvádí vztah (11).

$$x_1 = \frac{1}{2} a [m]; y_1 = r - \frac{4}{3} \frac{r.\sin^3\left(\frac{\beta}{2}\right)}{\beta - \sin(\beta)} [m]$$
 (11)

kde β [deg] - úhel kruhové výseče popsaný vztahem (12).

$$\beta = 2. \arccos\left(1 - \frac{h_{\rm p}}{r}\right) [m] \tag{12}$$

Souřadnice $\{x_2, y_2\}$ těžiště plochy $S_2 [m^2]$ uvádí vztah (13).

$$x_2 = \frac{1}{3} a [m], y_2 = h_P + \frac{1}{3} h_{LP} [m]$$
 (13)

Zdroj: Autor

Obr. 8 - Řez středem zanořeného (vynořeného) objemu plováku

Pro výpočet těžiště výtlaku je nutno vypočíst celkový objem zanoření $V_z [m^3]$ plováku, viz vztah (14), a jednotlivé dílčí objemy V_1 a V_2 znázorněné na obr.7 plochami $S_1 [m^2]$ a $S_2 [m^2]$. Objem $V_1 [m^3]$ je možno určit dle vztahu (15) a objem $V_2 [m^3]$ vztahem (16).

Zdroj: Autor

Obr. 9 - Určení ramene výtlaku pro případ 2)

Ročník 5., Číslo I., duben 2010

$$V_1 = S_1. a = \underbrace{\frac{r^2}{2}. [\beta - \sin\beta]}_{\text{plocha krub vis}} a [m^3]$$
(14)

$$V_2 = \frac{1}{2} \cdot \frac{\pi \cdot d^2}{4} \cdot a - V_1 \ [m^3]$$
(15)

$$V_{z} = V_{1} + V_{2} [m^{3}]$$
(16)

Nyní již můžeme stanovit souřadnice $\{x_v, y_v\}$ těžiště výtlaku V pomocí obecně známých vztahů (17) a (18).

$$x_{V} = \frac{1}{V_{z} \cdot \rho_{K}} \cdot \left(x_{1} \cdot V_{1} \cdot \rho_{K} + x_{2} \cdot V_{2} \cdot \rho_{K} \right) [m]$$
(17)

$$y_{V} = \frac{1}{V_{z} \cdot \rho_{K}} \cdot \left(y_{1} \cdot V_{1} \cdot \rho_{K} + y_{2} \cdot V_{2} \cdot \rho_{K} \right) [m]$$
(18)

Rameno výtlaku v [m] lze dle obr. 9 určit vztahem (19).

$$\mathbf{v} = \left(\frac{\mathbf{a}}{2} - \mathbf{h}_{\mathrm{G}} \cdot \mathbf{t} \mathbf{g} \alpha - \mathbf{x}_{\mathrm{V}}\right) \cdot \cos \alpha + \mathbf{y}_{\mathrm{V}} \cdot \sin \alpha \ [\mathrm{m}] \tag{19}$$

Stav 3) je definován zanořením plováku, které dosahuje právě poloměru plováku, přičemž plovák je vychýlen ze své rovnovážné polohy v rozmezí úhlu $\alpha = 22 \div 34,5$ deg.

Zdroj: Autor

Obr. 10 - Základní rozměry nakloněného plováku

Také v tomto případě platí, že při vychýlení plováku ve zmíněném intervalu úhlu náklonu $\alpha = 22 \div 34,5$ deg je zachována plocha S [m²], resp. objem zanoření, tzn. součet ploch S₁ [m²] a S₂ [m²], resp. objemů V₁ [m³] a V₂ [m³]. Pro výpočet souřadnic těžišť jednotlivých ploch je nezbytné stanovit velikosti délek ploch S₁ a S₂, které se mění v závislosti na úhlu naklonění α [deg] z toho vyplývá, že je zapotřebí vyjádřit délky h_{MP} [m] a h_N [m] jako funkce úhlu α [deg]. Z obr. 10 vyplývají následující vztahy a závislosti.

$$h_{\rm M} = \frac{1}{2} \left[a - \frac{d}{tg\alpha} \right] [m] \tag{20}$$

$$h_{N} = a - 2. h_{M} [m]$$
 (21)

91

Nyní je nutno stanovit polohu souřadnic těžiště jednotlivých ploch S_1 [m²], viz vztah (22) a S_2 [m²], viz vztah (23).

Zdroj: Autor

Obr. 11 - Řez středem zanořeného (vynořeného) objemu plováku pro případ 3)

$$x_1 = \frac{1}{2} h_M [m], y_1 = r [m]$$
 (22)

$$x_2 = \frac{5}{16} \cdot h_N + h_M [m], y_2 = \frac{3}{4} \cdot r [m]$$
 (23)

Výpočet polohy souřadnic těžiště plochy $S_2 [m^2]$ byl porovnáván a následně zpřesněn dle výpočtu těžiště pomocí metody konečných prvků programem ANSYS, neboť výpočet podle obecně známých vztahů nevedl na rozdíl od případu 1), viz tabulka č. 1, ke správnému řešení, což může být zapříčiněno např. specifickým tvarem objemu výtlaku pro úhel vychýlení plovoucí otoče v daném intervalu.

Zdroj: Autor

Obr. 12 - Určení ramene výtlaku pro případ 3)

Dílčí objemy V_1 [m³] a V_2 [m³] je možno určit dle vztahů (2.130) a (2.131) a konečný objem V_z [m³] zanoření plováku dle vztahu (24).

$$V_1 = S_1 \cdot h_M = \frac{\pi \cdot d^2}{4} \cdot h_M \ [m^3]$$
 (24)

92

$$V_2 = \frac{1}{2} \cdot \frac{\pi \cdot d^2}{4} - V_1 \ [m^3]$$
(25)

Nyní je již možno stanovit souřadnice $\{x_v, y_v\}$ těžiště výtlaku V pomocí vztahu, viz (17) a (18).

Rameno výtlaku v [m] lze dle obr. 12 určit vztahem (26).

$$\mathbf{v} = \mathbf{y}_{\mathbf{v}} \cdot \mathbf{t} \mathbf{g} \alpha \cdot \mathbf{c} \mathbf{o} \mathbf{x} - \left(\mathbf{x}_{\mathbf{v}} + \mathbf{h}_{\mathbf{G}} \cdot \mathbf{t} \mathbf{g} \alpha - \frac{\mathbf{a}}{2}\right) \cdot \mathbf{c} \mathbf{o} \mathbf{s} \alpha = \left(\mathbf{y}_{\mathbf{v}} \cdot \mathbf{t} \mathbf{g} \alpha - \mathbf{x}_{\mathbf{v}} - \mathbf{h}_{\mathbf{G}} \cdot \mathbf{t} \mathbf{g} \alpha + \frac{\mathbf{a}}{2}\right) \cdot \mathbf{c} \mathbf{o} \mathbf{s} \alpha \quad (26)$$

			Pro/ENGINEER			Analyticky v Mathcadu (bez užití integrálního počtu)				Pro/ENGINEER
Stav	α	α	У	X	y _{r0}	X	y _{r0}	chyba x	chyba y _{r0}	Rameno v
2)	rad	deg	mm	mm	mm	mm	mm	[%]	[%]	mm
	0,017	1	-339,203	1977,409	460,798	Hodnoty totožné s hodnotami dle programu Pro/ENGINEER				10,950
	0,035	2	-338,219	1939,836	461,781					21,889
	0,052	3	-336,580	1902,302	463,420					32,806
	0,070	4	-334,287	1864,826	465,713					43,689
	0,087	5	-331,343	1827,430	468,657					54,524
	0,105	6	-327,751	1790,136	472,249					65,297
	0,122	7	-323,514	1752,970	476,486	1755	476	0,116	0,102	75,991
	0,140	8	-318,655	1716,066	481,345	1719	481	0,171	0,072	86,479
	0,157	9	-313,157	1679,288	486,843	1683	486	0,221	0,173	96,903
	0,175	10	-307,052	1642,805	492,948	1648	491	0,316	0,395	107,101
	0,192	11	-300,332	1606,558	499,668	1614	497	0,463	0,534	117,141
	0,209	12	-293,033	1570,679	506,967	1580	503	0,593	0,783	126,896
	0,227	13	-285,162	1535,176	514,838	1547	509	0,770	1,134	136,361
	0,244	14	-276,744	1500,109	523,256	1516	515	1,059	1,578	145,485
	0,262	15	-267,816	1465,585	532,184	1485	522	1,325	1,914	154,160
	0,279	16	-258,414	1431,168	541,586	1456	527	1,735	2,693	162,805
	0,297	17	-248,591	1398,515	551,409	1429	533	2,180	3,339	169,822
	0,314	18	-238,410	1366,223	561,590	1404	537	2,765	4,379	176,547
	0,332	19	-227,962	1334,992	572,038	1382	540	3,521	5,601	182,294
	0,349	20	-217,360	1305,049	582,640	1362	541	4,364	7,147	186,817
	0,367	21	-206,778	1276,737	593,222	1348	538	5,582	9,309	189,743
3)	0,384	22	-196,533	1250,718	603,467	190,349 187,686 182,092 174,013 163,814 151,795 138,204 123,250 107,107 Pro/ENGINEER 89,924 71,829 52,929 33,318 13,087 -7,701 -28,980 -50,692				
	0,401	23	-187,065	1227,849	612,935					
	0,419	24	-178,346	1207,785	621,654					
	0,436	25	-170,284	1190,086	629,716					
	0,454	26	-162,804	1174,397	637,196					
	0,471	27	-155,840	1160,425	644,160					
	0,489	28	-149,339	1147,930	650,661					
	0,506	29	-143,250	1136,712	656,750					
	0,524	30	-137,533	1126,604	662,467					
	0,541	31	-132,152	1117,465	667,848					
	0,559	32	-127,075	1109,176	672,925					
	0,576	33	-122,273	1101,637	677,727					
	0,593	34	-117,730	1094,760	682,270					
	0,611	35	-113,402	1088,472	686,598					
	0,628	36	-109,292	1082,708	690,708					
	0,646	37	-105,374	1077,413	694,626					
	0,663	38	-101,634	1072,538	698,366					

Tab. 1 - Hodnoty souřadnic těžiště výtlaku

4. ZÁVĚR

V Tab. 1 jsou uvedeny analyticky vypočtené hodnoty souřadnic těžiště výtlaku plováku válcového tvaru pomocí výpočtového programu Mathcad a tyto souřadnice jsou srovnávány s numericky vyjádřenými hodnotami souřadnic těžiště výtlaku získanými výpočtem pomocí metody konečných prvků v prostředí ProEngineer. Odchylky příslušných hodnot souřadnic těžiště výtlaku určených analyticky a numericky jsou vyjádřeny v tabulce č. 1 chybou v %.

POUŽITÁ LITERATURA

[1] HRABOVSKÝ, L. Závěrečná zpráva projektu VaV ČBÚ P.č. 62-08 za 3. čtvrtletí 2009 etapy č. 4 pod názvem "Dynamická stabilita, ověření stability v provozních podmínkách". Ostrava, září 2009.