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NUMERICAL SIMULATION OF BODY MOVEMENTS 

Lubor Zháňal1, Petr Porteš2 

Summary: This article discusses the problems of body motion in three-dimensional space and 
numerical simulations using Newton-Euler motion equations. 

Key words: multibody, bodies, kinematics, dynamics, motion equations 

 

INTRODUCTION 

Numerical solutions of moving objects in three dimensional space are an important 
theme, especially for mechanism simulations. These simulations are solved with applications 
called multi-body systems, where mechanisms (Fig. 1) are assembled from rigid bodies, 
kinematic linkages, and other force interaction elements (e.g. external forces, springs, 
dampers, etc.).  The method of solution described above is suitable for use in a computing 
environment of multibody systems. 

 

 
Source: Authors 

Fig. 1 - Example of typical multibody mechanism 

For the purposes of this article, only the solution to determine the body movements if all 
acting forces are known is going to be discussed. This kind of body (Fig. 2) can be defined as 
absolutely rigid, with non-zero and positive weight and with main moments of inertia. These 
values are related to the body’s center of gravity. Furthermore, the body may contain other 
general points whose position is, again, determined relatively to the position of the body’s 
center of gravity. Each common point of the body is therefore represented by their own local 
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coordinate system (LCS), while the position and orientation of the body itself, i.e. its center of 
gravity, will be determined in the global coordinate system (GCS). 

Each of the points can be used, for example, as an acting place of external forces or 
moments, references for kinematic constraints, kinematic sensors, etc.  

1.1 Calculation of body movement 
The position of each object in GCS can be defined using the two data structures, where 

the first is a vector specifying displacement of the body’s center of gravity to the GCS origin, 
and the second is the transformation matrix for transformation from the local body space to 
the global space. For description of the rotation (i.e. orientation) the transformation matrix C 
for rotation around the general axis (Equation 1) is used (1). 

Where ex, ey and ez are the unit direction vector components of the general axis of 
rotation and θ is the angle of rotation. 

The movement of body is then in each iteration determined by the Newton-Euler 
equations of motion. In the environment of the multibody system, the entire solution could be 
as follows: 

 Determining of the force and torque results in the center of gravity. 

 Updating the kinematic state of the center of the gravity. 

 Updating the kinematic state of other common points of the body. 

1.2 Determining of the force and torque results in the center of gravity 
Points of the body (Fig. 2) are indexed from zero to N-1, where n is the number of 

points. The first point (i.e. point with zero index) is the body’s center of gravity. 

(1)
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Source: Authors 

Fig. 2 - Body with blue highlighted rotation of the local coordinate system 

 
Force and torque resultants in the body’s center of gravity (Equations 2, 3) are 

determined as a vector sum of the forces and moments in all of the points of the body. If 
gravitational acceleration is acting on the body, it can also be included in the resultant 
equations (Equation 2). 
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1.3 Updating the kinematic state of the center of the gravity 
Body’s kinematic state, or its center of the gravity, is determined by the Newton-Euler 

motion equations. Translational component arises from classical Newtonian motion equations 
(Equation 4), the velocity and position is obtained by subsequent integration (Equation 5, 6). 
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Angular acceleration Ar is determined on the basis of Euler’s motion equation (Equation 
7), where it is necessary to transform torque vector Mcg and angular velocity vector Vr using 
transformation matrix C to the local coordinate system of the body (determined by orientation 
of the center of the gravity), and then the result is transformed back to the global coordinate 
system (2). It is because of the correct calculation of the inertia tensor which is, in contrast to 
the weight, directional. Angular velocity Vr is determined by simple integration of angular 
acceleration (Equation 8). 

 (7)

 r rV A dt 


 (8) 

To obtain the orientation of the body, which is represented by the transformation matrix 
of rotation around the arbitrary axis (Equation 2), is not possible to use integration of the 
velocity vector in a three dimensional space, as with the translational movement (this is 
possible only in a plane) However, it is necessary to utilize a matrix process to compose 
rotations. In the form working with the discretization step Δt, the calculation then has 
following form: first, the angular velocity vector Vr (Equation 8) is determined after the 
normalization of the direction of rotation axis e (Equation 9) and by using the discretization 
step it is possible to compute the appropriate angle of rotation θ (Equation 10). 

 
(9)

 (10)

Note: The program must be protected against a case where in equation (9) would a division by zero 
occur. 

Subsequently, by using the transformation matrix (Equation 1) the incremental 
transformation matrix is calculated, and by multiplying it with matrix of rotational position 
from the previous discretization step k-1 the new rotational position for actual time is 
determined (Equation 11). 

 (11)

1.4 Updating the kinematic state of other common points of the body 
After the kinematic state of center of the gravity is calculated, all of other kinematic 

states in the remaining points of the body can be easily determined. The translational position 
of the point in GCS is determined by transformation and addition of relative displacement 
vector to the translational position of the center of gravity (Equation 12). Vectors of 
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translational velocity and accelerations are calculated as the numerical derivation of positions, 
or acceleration (Equation 14, 16). Orientation (i.e. “rotational position”) is the product of a 
transformation matrix of the center of gravity and the transformation matrix in the relevant 
point (Equation 13). Angular acceleration and angular velocity of all points of the body are 
identical, so their values can be determined directly from point 0 (Equation 15, 17), which 
were determined when calculating the kinematic state of the body’s center of gravity of the 
body. 
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 CONCLUSION 

The method described in this article provides a simple and reliable approach to 
numerical solution of motion of bodies in three dimensional space (Fig. 3). Using the 
transformation matrix for rotation around the arbitrary axis, elegantly avoids the problems 
arising from the composition of rotations in space. The advantages are also easy and 
straightforward implementations using conventional programming languages, type C, Pascal, 
Matlab, etc. 
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Source: Authors 

Fig. 3 - Multibody application based on described method 
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