ANALYSIS OF APPLICABILITY OF X-12-ARIMA METHOD FOR FORECASTING AND DECOMPOSITION OF PASSENGER DEMAND TIME SERIES
Keywords:
X-12-ARIMA, Passenger demand for suburb bus transport, Short-term passenger demand forecasting, Passenger demand time series seasonal adjustmentAbstract
Identification and description of trend, seasonality, ongoing changes in nature of main components of economic time series as well as its forecasting requires application of proper decomposition approach to its modelling and forecasting. The main purpose of the paper is to analyse applicability of the X-12-ARIMA decomposition procedure, which should eliminate limitations of X-11-ARIMA/88 method, in order to decompose of passenger demand for suburb bus transport time series. Applicability of X-12-ARIMA procedure was tested by several statistical tests, summary measures (M1-M7, Q1 and Q2) and goodness-of-fit measures. Outputs of the analyses proved applicability of X-12-ARIMA procedure in the process of passenger demand time series analysis.
Downloads
References
Dostupné z <http://www.ssc.sk/sk/Rozvoj-cestnej-siete/Dopravne-inzinierstvo/Celostatnescitanie-
dopravy-2010.ssc>.
(2) Celoštátne sčítanie dopravy 2005 [online]. c2005 [cit. 2011-10-20].
Dostupné z <http://www.ssc.sk/sk/Rozvoj-cestnej-siete/Dopravne-inzinierstvo/Celostatnescitanie-
dopravy-v-roku-2005.ssc>.
(3) Celoštátne sčítanie dopravy 2000 [online]. c2000 [cit. 2011-10-20].
Dostupné z <http://www.ssc.sk/sk/Rozvoj-cestnej-siete/Dopravne-inzinierstvo/Celostatnescitanie-
dopravy-v-roku-2000.ssc>.
(4) Štatistická ročenka Slovenskej republiky [online]. c1996-2000 [cit. 2011-10-29].
Dostupné z <http://portal.statistics.sk/showdoc.do?docid=15949>.
(5) CYPRICH, O.. Analýza použiteľnosti metódy X-11-ARIMA/88 pri sezónnom očisťovaní
dopytu cestujúcich po prímestskej autobusovej doprave, 2001. [zatiaľ nepublikované]
(6) DAGUM, E.B. The X11ARIMA/88 Seasonal Adjustment Method : Foundations and
User´s Manual. Ottawa : Statistics Canada, 1988.
(7) U.S. BUREAU OF THE CENSUS. X-12-ARIMA Reference Manual, Version 0.2.8.
Washington, DC : SAS U.S. Bureau of the Census, 2001.
(8) U.S. BUREAU OF THE CENSUS. X-12-ARIMA Seasonal Adjustment Program, Version
0.2.8. Washington, DC : SAS U.S. Bureau of the Census, 2001.
(9) CIPRA, T. Finanční ekonometrie. 1. vyd. Praha : Ekopress, 2008. 538 s. ISBN 978-80-
86929-43-9.
(10) TREVIN, D. A. Guide to Interpreting Time Series – Monitoring Trends. Canberra : ABS,
2003. 148 s. ISBN 0-642-54286-4.
(11) YOUNG, A.. Estimating Trading-Day Variation. In Monthly Economic Time Series.
Washington, D. C. : U.S. Bureau of the Census, 1965. Technical paper No. 12.
(12) CYPRICH, O. Modelovanie dopytu cestujúcich po prímestskej autobusovej doprave
[koncept dizertačnej práce]. Žilinská univerzita v Žiline. Fakulta prevádzky a ekonomiky dopravy a spojov; Katedra cestnej a mestskej dopravy. Školiteľ: prof. Ing. Štefan Liščák,
CSc. . Stupeň odbornej kvalifikácie: philosophiae doctor. Žilina fPEDaS, 2012.
(13) SAS 9.1.3 [počítačový program na disku]. Cary, NC : SAS Institute Inc., 2003. posledná
aktualizácia 22. december 2008.
(14) HALLAHAN, Ch. The Time Series Forecasting System In SUGI 25. part Hands-on
Workshop, 2000. Paper 155-25.
(15) SAS INSTITUTE Inc. SAS/ETS® 9.1 User’s Guide. 1. vyd. Cary, NC : SAS Institute Inc.,
2004. 2436 s. ISBN 1-59047-244-6.
(16) LJUNG, G. M. On Outlier Detection in Time Series In Journal of the Royal Statistical
Society. Series B (Methodological), 1993. Vol. 55, No. 2. s. 559-567.
(17) ŠOLTÉS, E. Regresná a korelačná analýza s aplikáciami. 1. vyd. Bratislava : Iura, 2008.
538 s. ISBN 978-80-86929-43-9.
(18) CLEVELAND, W.S., DEVLIN, S.J. Calendar Effects in Monthly Time Series :
Detection by Spectrum Analysis and Graphical Methods In Journal of the American
Statistical Association, 1980. Vol. 75, No. 371. s. 487-496.
(19) DAGUM, E.B. The X-11-ARIMA Seasonal Adjustment Method. Statistics Canada, 1980.
(20) AKAIKE, H., ISHIGURO, M. Bayesian Seasonal Adjustment Program In Computer
Science Monographs. Tokyo : The Institute of Statistical Mathematics, 1980. No. 13.
(21) HOOD, C. C. SAS Programs to Get the Most from X-12-ARIMA's Modeling and
Seasonal Adjustment Diagnostics In SUGI 25, 2000. part Statistics and Data analysis.
Paper 264-25.
(22) CLEVELAND, W.S., Devlin, S.J. Calendar Effects in Monthly Time Series : Detection
by Spectrum Analysis and Graphical Methods In Journal of the American Statistical
Association, 2000. Vol. 75, No. 371. s. 487-496.
(23) LOTHIAN, J., MORRY M. A Set of Quality Control Statistics for the X-11-ARIMA
Seasonal Adjustment Method. Research paper 78-10-002E. s.l. : Statistics Canada, 1978.
(24) FINDLEY, D.F., MONSELL, B.C., SHULMAN, H.B., Pugh, M.G. Sliding Spans
Diagnostics for Seasonal and Related Adjustments In Journal of the American Statistical
Association, 1990. Vol 85, No. 410. s. 345-355.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ondrej Cyprich##common.commaListSeparator##Lukáš Holeša
This work is licensed under a Creative Commons Attribution 4.0 International License.