METHODS FOR MARSHALING YARD LOCATION PROBLEM

Authors

  • Michal Koháni

Keywords:

distribution system, heuristic, many-to-many, exact method, marshaling yard

Abstract

A cargo railway system is a transportation system, which has approximately the same number of primary sources as number of customers. Flows of carriages from primary sources to customers are concentrated in terminals (marshaling yards) to create a bigger flow between them. This model is called „many-to many“ distribution system, belongs to discrete quadratic programmes and the optimal solution can’t be founded because of time purposes. For estimating the optimal value can be used the lower bound solution of the model. Estimation of optimal value can be used for comparision of “quality” of solutions obtained by aproximative and heuristics methods.

Downloads

Download data is not yet available.

References

Buzna, Ľ. „Návrh štruktúry distribučného systému pomocou spojitej aproximácie a

diskrétneho programovania“, dizertačná práca, FRI ŽU, Žilina, 2003.

Erlenkotter, D. „A Dual-Based Procedure for Uncapacitated Facility Location“,

Operations Research, volume 26, No.6, November-December 1978, s. 992-1009.

Gábrišová, L. „Limits of the multiplier adjustment approach to capacitated location

problem“, 2005 In: Komunikácie - vedecké listy Žilinskej univerzity - Roč. 7, č. 4

(2005), pp. 52-55.

Janáček, J., Koháni, M. „Exact Solving of the Many-To-Many Distribution System

Design Problem“, Journal of Information, Control and Management Systems, FRI

ŽU, Žilina, 2005.

Janáček, J., Koháni, M. The Algorithm Supra for Marshalling Yard System

Optimization, Eurnex-Žel 2007 conference, Žilina, June 2007.

Janáček a kol. „Správa o riešení pilotného projektu úlohy 5.3 „Programové riešenie

pre optimalizáciu riadenia prepravnej práce“, Fakulta riadenia a informatiky ŽU,

Žilina, 2001.

Koháni, M. “Lower Bound for the “Many-to-Many” Distribution System Desing

Problem”, Journal of Information, Control and Management Systems, Volume 4,

No.2/1, Fakulta riadenia a informatiky, Žilinská univerzita, Žilina, 2006, p. 135-

Koháni, M. “Improving of the Upper Bound for “Many-to-Many” Distribution

System Desing”, zborník 15. medzinárodnej konferencie MMEI 2007 Herľany,

UPJŠ Košice, 3.-7.6.2007, str. 135-142.

Márton, P. „Vlakotvorba a vlakotvorné stanice na Slovensku – súčasnosť“

Horizonty dopravy, ročník XIII., č. 1/2005, s. 41-43.

Published

2008-12-30

How to Cite

Koháni, M. (2008). METHODS FOR MARSHALING YARD LOCATION PROBLEM. Perner’s Contacts, 3(5), 169–176. Retrieved from https://pernerscontacts.upce.cz/index.php/perner/article/view/1362

Issue

Section

Articles