DETERMINATION OF THE OCTANE NUMBER OF AUTOMOTIVE GASOLINES BY FTIR SPECTROMETRY WITH CHEMOMETRICS
DOI:
https://doi.org/10.46585/pc.2022.2.2403Klíčová slova:
octane number, gasoline, fuels, measurement, quality, FTIR spectrometry, chemometric modelAbstrakt
The quality of motor fuels is more and more strictly controlled in connection with many factors - users are particularly interested in the anti-knock resistance of automotive gasolines, quantitatively expressed by the value of the research octane number (RON). The paper presents FTIR spectrometry in conjunction with chemometry as an alternative method to the standardized determination of the octane number of gasoline by a research method according to ČSN EN ISO 5164. An FTIR-PLS regression model working with spectra in the range of 650–4000 cm-1 was proposed for ON prediction. With this model, a very strong dependence (R=0.996) was achieved between the predicted of octane number values and the values determined by the standardized method; the calibration error was 0.414.
Stažení
Reference
Gardyński, L. and Kałdonek, J. 2020. Research on lubrication properties of selected raw plant and animal materials. Transport, 35(1), pp. 20–25. <https://doi.org/10.3846/transport.2020.11961>
Mikulski, M., Hunicz, J., Duda, K., Kazimierski, P., Suchocki, T. and Rybak, A. 2022. Tyre pyrolytic oil fuel blends in a modern compression ignition engine: A comprehensive combustion and emissions analysis. Fuel, 320, 123869. <https://doi.org/10.1016/j.fuel.2022.123869>
Rayapureddy, S. M., Matijošius, J., Rimkus, A., Caban, J. and Słowik, T. 2022. Comparative Study of Combustion, Performance and Emission Characteristics of Hydrotreated Vegetable Oil–Biobutanol Fuel Blends and Diesel Fuel on a CI Engine. Sustainability, 14(12), 7324. <https://doi.org/10.3390/su14127324>
Kamiński, M., Budzyński, P., Hunicz, J. and Józwik, J. 2021. Evaluation of changes in fuel delivery rate by electromagnetic injectors in a common rail system during simulated operation. Eksploatacja i Niezawodność, 23(2).
Aleme, H. G. and Barbeira, P. J. 2012. Determination of flash point and cetane index in diesel using distillation curves and multivariate calibration. Fuel, 102, pp. 129–134. <https://doi.org/10.1016/j.fuel.2012.06.015>
Barra, I., Kharbach, M., Qannari, E. M., Hanafi, M., Cherrah, Y. and Bouklouze, A. 2020. Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression. Vibrational Spectroscopy, 111, 103157. <https://doi.org/10.1016/j.vibspec.2020.103157>
Fodor, G. E., Mason, R. A. and Hutzler, S. A. 1999. Estimation of middle distillate fuel properties by FT-IR. Applied Spectroscopy, 53(10), pp. 1292–1298.
Hradecká, I., Velvarská, R., Jaklová, K. D. and Vráblík, A. 2021. Rapid determination of diesel fuel properties by near-infrared spectroscopy. Infrared Physics & Technology, 119, 103933. <https://doi.org/10.1016/j.infrared.2021.103933>
Kardamakis, A. A. and Pasadakis, N. 2010. Autoregressive modeling of near-IR spectra and MLR to predict RON values of gasolines. Fuel, 89(1), pp. 158–161. <https://doi.org/10.1016/j.fuel.2009.08.029>
Sejkorová, M., Kučera, M., Hurtová, I. and Voltr, O. 2021. Application of FTIR-ATR spectrometry in conjunction with multivariate regression methods for viscosity prediction of worn-out motor oils. Applied Sciences, 11(9), 3842. <https://doi.org/10.3390/app11093842>
Sejkorová, M., Šarkan, B., Veselík, P. and Hurtová, I. 2020. FTIR Spectrometry with PLS Regression for Rapid TBN Determination of Worn Mineral Engine Oils. Energies, 13(23), 6438. <https://doi.org/10.3390/en13236438>
Teixeira, L. S., Oliveira, F. S., dos Santos, H. C., Cordeiro, P. W. and Almeida, S. Q. 2008. Multivariate calibration in Fourier transform infrared spectrometry as a tool to detect adulterations in Brazilian gasoline. Fuel, 87(3), pp. 346-352.
Stahování
Publikováno
Jak citovat
Číslo
Sekce
Licence
Copyright (c) 2022 Ivana Hurtová, Marie Sejkorová
Tato práce je licencována pod Mezinárodní licencí Creative Commons Attribution 4.0 .
Přijat 2022-12-16
Publikován 2022-12-30