ARTIFICIAL NEURAL NETWORKS IN PROCESS CONTROL

Authors

  • Petr Doležel
  • Ivan Taufer

Keywords:

Artificial Neural Networks, Continual Bioreactor, Internal Model Control

Abstract

There is demonstrated one possibility of artificial neural networks usage in process control, in this paper. First, it is shown how to create dynamic neural model of a plant, then its inverse neural model and in the end, these models are used to synthesise the Internal Model Control network. Although this procedure is demonstrated on the example of continual bioreactor control, it can be applied to many other spheres.

Downloads

Download data is not yet available.

References

HAYKIN, S. Neural Networks. New Jersey : Prentice Hall, 1999. 845 s. ISBN 0-13-

-1

DOLEŽEL, P. Umělé neuronové sítě v modelování a řízení kontinuálního bioreaktoru

[Diplomová práce]. Pardubice : Univerzita Pardubice, 2008. 110 s.

RIVERA, E. D.; MORARI, M.; SKOGESTAD, S. Internal Model Control: PID

Controller Design, Industrial & Engineering Chemistry Process Design and

Development, 1986, vol. 25, s. 252-265. ISSN 0196-4305

TAUFER, I.; DRÁBEK, O.; SEIDL, P. Umělé neuronové sítě – základy teorie a

aplikace (10), CHEMagazín, 2008, roč. XVII, č. 1, s. 35-37. ISSN 1210-7409

Published

2008-12-30

How to Cite

Doležel, P., & Taufer, I. (2008). ARTIFICIAL NEURAL NETWORKS IN PROCESS CONTROL. Perner’s Contacts, 3(5), 61–68. Retrieved from https://pernerscontacts.upce.cz/index.php/perner/article/view/1333

Issue

Section

Articles