INFLUENCE OF EDGE REINFORCING RING ROTATION ON LOAD CARRYING CAPACITY OF CONICAL SHELLS LOADED BY EXTERNAL PRESSURE
DOI:
https://doi.org/10.46585/pc.2022.1.2296Keywords:
thin-walled structures, conical shells, FEM, load carrying capacity, loss of stabilityAbstract
The aim of the article is to present a part of the problem of calculating the load carrying capacity of conical shells, which by their dimensions and selected boundary conditions do not comes under within the scope the standards. The investigated conical shells have a semi vertex angle in the range of 75 ° - 85 ° and are provided with a reinforcing ring at the lower edge. When the conical shells are loaded by external pressure, not only does the edge ring move in the radial direction, but also its rotation (the moment has the direction of the tangent to the edge of the cone). This paper addresses the question of how this rotation affects the overall load capacity of a conical shell. Due to the fact that the investigated shell structures cannot be solved using standard methods and procedures, this problem is solved by means of numerical analyzes and experiments. Based on the results of numerical analyzes of the load carrying capacity of conical shells with different boundary conditions, the suitability of using simplified numerical models and samples for performing experiments was verified.
Downloads
References
Bushnell D. 1989. Computerized buckling analysis of shells. Kluwer Academic Publishers. Dordrecht. ISBN: 9024730996.
Paščenko, P., Středová, D. and Tomek, P. 2013. Stabilita kulového vrchlíku. Pardubice: Univerzita Pardubice.
Středová, D. 2012. Stabilitní prolomení kuželových skořepin s malým vzepětím. Thesis. Pardubice.
Tomek, P. 2012. Vliv počátečních imperfekcí na pevnost a stabilitu tenkostěnných skořepinových konstrukcí. Thesis. Pardubice.
Paščenko P. 2002. Posouzení stability válcového pláště CK tanku na skladování piva. Znalecký posudek č. 001/2002.
Chryssanthopoulos, M., Spagnoli, A. 1997. The Influence of Radial Edge Constraint on the Stability of Stiffened Conical Shells in Compression. Thin-Walled Structures 27(2). pp. 147-163. Elsevier Science Ltd.
Esslinger, M., Van Impe, R. 1987. Theoretical buckling loads of conical shells. ECCS Colloquium on Stability of Plate and Shell Structures. pp. 387-395. Ghent University.
Poggi, C. 1997. Numerical analysis of imperfect conical shells. Proceedings of International Conference on Carrying Capacity of Steel Shell Structures. Brno. pp. 317-323.
Středová, D., Paščenko, P. 2011. Conical shells under external pressure. Proceedings of 13th International Scientific Conference Applied Mechanics 2011. Brno.
Tomek, P., Paščenko, P. 2011. Influence of boundary conditions on the loss of stability of imperfect spherical caps. 13th Conference Applied Mechanics. Praha: Ústav fyziky materiálů AV ČR, 2011. s. 223-226 s. ISBN 978-80-87434-03-1.
ČSN EN 1993-1-6. 2008. Navrhování ocelových konstrukcí. Pevnost a stabilita skořepinových konstrukcí. Český normalizační institut.
ČSN EN 13445-3. 2003. Netopené tlakové nádoby. Část 3: Konstrukce a výpočet. Český normalizační institut.
Deutsche Institut für Normung. 1990. DIN 18800, Part 4. Structural steelwork, Analysis of safety against buckling of shells. Berlin. Beuth Verlag GmbH.
European Convention for Constructional Steelwork. 2008. ECCS TC8 TWG 8.4 Buckling of Steel Shells. European Design Recommendations. 5th Edition. ISBN: 92-9147-000-92.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Doubravka Stredova, Petr Tomek
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-05-31
Published 2022-06-30