IMAGE PRE-PROCESSING METHODS USED FOR AUTOMATIC DETECTION OF ROAD USERS

Authors

DOI:

https://doi.org/10.46585/pc.2022.2.2389

Keywords:

image pre-processing, filtering, denoising, mathematical morphology, thresholding, automatic detection

Abstract

The main objective of this paper is to conduct an analysis of image pre-processing methods and to state individual authors and publications dealing with them. In order to obtain a systematic review, a methodology of relevant sources‘ searching is proposed in the article. The methods of image pre-processing precede the automatic detection of road users. Thank to suitably chosen image pre-processing process is the automatic detection more accurate and faster as well as consequent classification of the detected objects and their tracking. Suitable image pre-processing is used by the standard background subtraction method and by modern methods working on the principle of neural networks like CNN, YOLO, SSD etc. The content of this article is a review of individual most commonly used pre-processing methods and publications, where individual authors use them to prepare frames prior to various automatic detection methods. An evaluation of results follows and in the conclusion ways for further research are proposed based on the analysis.

Downloads

Download data is not yet available.

References

Seenouvong, N., Watchareeruetai U., Nuthong C., Khongsomboon K. a Ohnishi, N. 2016. A computer vision based vehicle detection and counting system. 8th International Conference on Knowledge and Smart Technology (KST). DOI: 10.1109/KST.2016.7440510.

Zhuang, X., Kang, W. a Qiuxia, U. 2016. Real-time vehicle detection with foregroundbased cascade classifier. IET Image Processing, 10(4): 289-296.

Crouzil, A., Khoudour, L., Valiere, P. a Truong, N. 2016. Automatic Vehicle Counting System for Traffic Monitoring. Journal of Electronic Imaging. 25. 051207. 10.1117/1.JEI.25.5.051207.

Koetsier, C., Busch, S. a Sester, M. 2019. Trajectory extraction for analysis of unsafe driving behaviour. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13. Enschede, Netherlands.

Najm, M. a Ali, Y. H. 2020. Automatic Vehicles Detection, Classification and Counting Techniques / Survey. Iraqi Journal of Science, 61(7), 1811–1822. https://doi.org/10.24996/ijs.2020.61.7.30

Chen, X-Z, Liao, K-K., Chen, Y-L., Yu, C-W. a Wang, C. 2018. A vision-based nighttime surrounding vehicle detection system. 7th International Symposium on Next Generation Electronics (ISNE). pp. 1-3, doi: 10.1109/ISNE.2018.8394717.

Ooi, H. L., Bilodeau a G. A., Saunier, N. 2020. Supervised and unsupervised detections for multiple object tracking in traffic scenes: A comparative study. In International conference on image analysis and recognition (pp. 42-55). Springer, Cham.

Yaghoobi, E. N., Menéndez J. M. a Jiménez D. 2018. Robust vehicle detection in different weather conditions: Using MIPM. PLOS ONE 13(3): e0191355. https://doi.org/10.1371/journal.pone.0191355.

Yang, Y. a Bilodeau, G. A. 2017. Multiple Object Tracking with Kernelized Correlation Filters in Urban Mixed Traffic. 14th Conference on Computer and Robot Vision (CRV), pp. 209-216, doi: 10.1109/CRV.2017.18.

Karim, A. A. 2018. Construction of a Robust Background Model for Moving Object Detection in Video Sequence. Iraqi Journal of Science, 59(2B), 969–979.

Waykole, S., Shiwakoti, N. a Stasinopoulos, P. 2021. Review on Lane Detection and Tracking Algorithms of Advanced Driver Assistance System. Sustainability. 13, 11417. https://doi.org/10.3390/su132011417.

Moutakki, Z., Ouloul, M. I., Karim, A. a Abdellah, A. 2018. Real-Time System Based on Feature Extraction for Vehicle Detection and Classification. Transport and Telecommunication Journal. 19. 93-102. 10.2478/ttj-2018-0008.

Kaur, P., Kumar, Y. a Gupta, S. 2022. Artificial Intelligence Techniques for the Recognition of Multi-Plate Multi-vehicle Tracking Systems: A Systematic Review. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-022-09753-4.

Guo, L., Liu, K., Zhang, L., Zhang, Y., Tian, Y. a Zhang, J. 2021. Research on Vision Perception Technology of Auto Fueling Robot on opencv-based gas tank cap recognition. In Journal of Physics: Conference Series (Vol. 1952, No. 2, p. 022067). IOP Publishing.

Razi, A., Chen, X., Li, H., Russo, B.J., Chen, Y. a Yu, H. 2022. Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review. ArXiv, abs/2203.10939.

Stratmann, L. 2022. HSV [online]. Dostupné z: http://color.lukas-stratmann.com/. [cit. 2022-02-22].

Yaghoobi, E. N., Menéndez, J.M. a Jiménez, D. 2018. Robust vehicle detection in different weather conditions: Using MIPM. PLoS ONE 13(3): e0191355. https://doi.org/10.1371/journal.pone.0191355.

Beaupré, D. A., Bilodeau a G. A., Saunier, N. 2018. Improving multiple object tracking with optical flow and edge preprocessing. arXiv preprint arXiv:1801.09646.

Horák, K. Matematická morfologie [online]. Brno University of Technology: Computer Vision Group.

Dostupné z: http://vision.uamt.feec.vutbr.cz/ZVS/lectures/11_Matematicka_morfologie.pdf. [cit. 2022-02-24].

Shashirangana, J., Padmasiri, H., Meedeniya, D. a Perera, C. 2021. Automated License Plate Recognition: A Survey on Methods and Techniques. IEEE Access, vol. 9, pp. 11203-11225. doi: 10.1109/ACCESS.2020.3047929.

Song, H., Liang, H., Li, H., Dai, Z. a Yun, X. 2019. Vision-based vehicle detection and counting system using deep learning in highway scenes. Eur. Transp. Res. Rev. 11, 51. https://doi.org/10.1186/s12544-019-0390-4.

Addala, S. 2020. Research paper on vehicle detection and recognition. 10.13140/RG.2.2.34908.82561.

Zhao, Z. Q., Zheng, P., Xu, S. T., and Wu, X. 2019. Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.

Kumar, V. a Singh, A. 2018. Deep Learning based Vehicle Detection and Tracking Techniques: State-of-the-Art Survey. International Journal of Computer Science and Information Security (IJCSIS), Vol. 16, No. 8. ISSN 1947-5500.

Plötz, T. a Roth, S. 2017. Benchmarking Denoising Algorithms with Real Photographs. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 2750-9.

Arafat, M. Y., Khairuddin, A., Khairuddin, U. a Paramesran, R. 2019. Systematic review on vehicular licence plate recognition framework in intelligent transport systems. IET Intelligent Transport Systems. 13. 10.1049/iet-its.2018.5151.

Chakraborty, P., Hegde a C., Sharma, A. 2019. Data-driven parallelizable traffic incident detection using spatio-temporally denoised robust thresholds. Transportation research part C: emerging technologies. 105:81-99.

Yao, L., Zhao, Y., Fan, J., Liu, M., Jiang, J. a Wan, Y. 2019. Research and Application of License Plate Recognition Technology Based on Deep Learning. Journal of Physics: Conference Series, Vol 1237, Issue 2. https://doi.org/10.1088/1742-6596/1237/2/022155.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesusa, L., Berriela, R., Paixao, T., Mutzc, F., Veronesea, L., Oliveira-Santosa, T. a De Souza, A. F. 2021. Self-driving cars: A survey. Expert Systems with Applications, 165, 113816.

Parvin, S., Rozario, L. a Islam, Md. 2021. Vision-Based On-Road Nighttime Vehicle Detection and Tracking Using Taillight and Headlight Features. Journal of Computer and Communications. 09. 29-53. 10.4236/jcc.2021.93003.

Luvizon, D. C., Nassu, B. T. a Minetto, R. 2017. A Video-Based System for Vehicle Speed Measurement in Urban Roadways. Trans. Intell. Transport. Syst. 18, 6, 1393–1404. https://doi.org/10.1109/TITS.2016.2606369

Abdelhamed, A., Lin, S. a Brown, M. S. 2018. A High-Quality Denoising Dataset for Smartphone Cameras. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 1692-700.

Lee, Y., Lee, S.-h., Yoo, J. a Kwon, S. 2021. Efficient Single-Shot Multi-Object Tracking for Vehicles in Traffic Scenarios. Sensors 21, no. 19: 6358. https://doi.org/10.3390/s21196358

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z. a Qu, R. 2019. A Survey of Deep Learning-Based Object Detection. IEEE Access, vol. 7, pp. 128837-128868. doi: 10.1109/ACCESS.2019.2939201.

Li, Y., Wang, J., Huang, J. a Li, Y. 2022. Research on Deep Learning Automatic Vehicle Recognition Algorithm Based on RES-YOLO Model. Sensors (Basel). 22(10):3783. doi: 10.3390/s22103783.

Yuan, Z., Xie, X., Hu, J. a Yao, D. 2014. An Efficient Method for Traffic Image Denoising. Procedia-Social and Behavioral Sciences. 138:439-45.

Ooi, H-L., Bilodeau, G-A. a Saunier, N. 2019. Tracking in Urban Traffic Scenes from Background Subtraction and Object Detection. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11662. Springer, Cham. https://doi.org/10.1007/978-3-030-27202-9_17.

Vácha, L. 2016. Detekce aut přijíždějících ke křižovatce. Diplomová práce. VUT Brno.

Truchlík, S. 2013. Detekcia motorových vozidiel v 2D obraze. Diplomová práce. VŠB – Technická univerzita Ostrava.

Kříž, K. 2013. Detekce dopravních prostředků a vyhodnocování jejich stavů z videozáznamů křižovatek. Diplomová práce. Masarykova univerzita Brno.

Vašička, A. 2018. Detekce a klasifikace objektů v obraze z kamery. Diplomová práce. Univerzita Tomáše Bati ve Zlíně.

Sochor J. 2014. Fully Automated Real-Time Vehicles Detection and Tracking with Lanes Analysis. In: Proceedings of CESCG 2014. Smolenice: Technische Universität Wien s. 59-66. ISBN 978-3-9502533-6-8.

Published

2022-12-30

How to Cite

Berg, J., Jilek, P., Pokorný, J., & Krmela, J. . (2022). IMAGE PRE-PROCESSING METHODS USED FOR AUTOMATIC DETECTION OF ROAD USERS. Perner’s Contacts, 17(2). https://doi.org/10.46585/pc.2022.2.2389

Issue

Section

Articles
Received 2022-10-18
Accepted 2022-11-03
Published 2022-12-30