THE INFLUENCE OF AMBIENT TEMPERATURE ON ELECTRIC BUS CONSUMPTION
DOI:
https://doi.org/10.46585/pc.2021.2.1694Keywords:
electromobility, electric bus, fuel, consumption, operation, batteriesAbstract
This paper focuses on the research of the influence of ambient temperature on the electricity consumption of electric buses. The fundamental material was a detailed database of operational data. We also used records of the average temperature at the place of operation of electric buses. In the introduction, we discuss the gradual advent of electric bus technology in the Slovak Republic. We also mapped the composition of the vehicle fleet. In this case, we analysed the Škoda Perun 26SH01 vehicles, focusing on operation during winter and summer. The analysed months had significantly different average daily temperatures. It has a significant impact on the overall consumption of the electric bus because the analysed type has a passenger cabin that is electrically heated. In this article, we answer several research questions related to the consumption of electric buses in our climatic conditions.
Downloads
References
Abotalebi, E., Scott, D. M. a Ferguson, M. R. 2019. Can Canadian households benefit economically from purchasing battery electric vehicles?. Transportation Research Part D: Transport and Environment, 77, 292-302. < https://doi.org/10.1016/j.trd.2019.10.014>
Björnsson, L. H. a Karlsson, S. 2017. Electrification of the two-car household: PHEV or BEV?. Transportation Research Part C: Emerging Technologies, 85, 363-376. <https://doi.org/10.1016/j.trc.2017.09.021>
Brdulak, A., Chaberek, G. a Jagodziński, J. 2020. Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries. Energies, 13(16), 4239. <https://doi.org/10.3390/en13164239>
Conti, M., Kotter, R. a Putrus, G. 2015. Energy efficiency in electric and plug-in hybrid electric vehicles and its impact on the total cost of ownership. In Electric Vehicle Business Models (pp. 147-165). Springer, Cham. <https://doi.org/10.1007/978-3-319-12244-1_>
Evidencia vozidiel slovenských dopravcov [Online]. Dostupné z: https://evidencia-dopravcov.eu/ [prístup: 07.09.2021].
Final energy consumption by sector, EU-27, 2018 [Online]. Dostupné z: https://ec.europa.eu/eurostat/statistics-explained/ [prístup: 07.09.2021].
Frost, S. 2013. Strategic analysis of global hybrid and electric heavy-duty transit bus market (NC7C-01). New York: Frost & Sullivan Publication.
Harantová, V., Kalašová, A. a Kubíková, S. 2021. Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation. Sustainability, 13(5), 2467. <https://doi.org/10.3390/su13052467>
Hurst, D. 2011. Thinking outside the car: using electricity for two-wheel vehicles, trucks, buses, locomotive, and off-road vehicles. USA: Pike Research.
iMHD.sk: Vozidlá [Online]. Dostupné z: https://imhd.sk/za/popis-typu-vozidla/887/%C5%A0koda-Perun-26SH [prístup: 07.09.2021].
Interné údaje o prevádzke elektrobusov poskytnuté Dopravným podnikom mesta Žilina.
Kwon, Y., Kim, S., Kim, H. a Byun, J. 2020. What Attributes Do Passengers Value in Electrified Buses?. Energies, 13(10), 2646. <https://doi.org/10.3390/en13102646>
Lajunen, A. 2014. Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transportation Research Part C: Emerging Technologies, 38, 1-15. <https://doi.org/10.1016/j.trc.2013.10.008>
Lebeau, K., Van Mierlo, J., Lebeau, P., Mairesse, O. a Macharis, C. 2013. Consumer attitudes towards battery electric vehicles: a large-scale survey. International Journal of Electric and Hybrid Vehicles, 5(1), 28-41. <https://doi.org/10.1504/IJEHV.2013.053466>
Mahmoud, M., Garnett, R., Ferguson, M. a Kanaroglou, P. 2016. Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews, 62, 673-684. <https://doi.org/10.1016/j.rser.2016.05.019>
McKenzie, E. C. a Durango-Cohen, P. L. 2012. Environmental life-cycle assessment of transit buses with alternative fuel technology. Transportation Research Part D: Transport and Environment, 17(1), 39-47. <https://doi.org/10.1016/j.trd.2011.09.008>
MeteoInfo.sk: Žilina [Online]. Dostupné z: https://meteoinfo.sk/stanice/1-zilina-solinky/archiv/datum-29-2-2021 [prístup: 07.09.2021].
Miles, J. a Potter, S. 2014. Developing a viable electric bus service: The Milton Keynes demonstration project. Research in Transportation Economics, 48, 357-363. <https://doi.org/10.1016/j.retrec.2014.09.063>
Munim, Z. H. a Noor, T. 2020. Young people's perceived service quality and environmental performance of hybrid electric bus service. Travel Behaviour and Society, 20, 133-143. <https://doi.org/10.1016/j.tbs.2020.03.003>
Nurhadi, L., Borén, S. a Ny, H. 2014. A sensitivity analysis of the total cost of ownership for electric public bus transport systems in Swedish medium-sized cities. Transportation Research Procedia, 3, 818-827. <https://doi.org/10.1016/j.trpro.2014.10.058>
Nylund, N. O. a Koponen, K. 2012. Fuel and technology alternatives for buses: Overall energy efficiency and emission performance. VTT Technical Research Centre of Finland.
Pihlatie, M., Kukkonen, S., Halmeaho, T., Karvonen, V. a Nylund, N. O. 2014. Fully electric city buses-The viable option. In 2014 IEEE International Electric Vehicle Conference (IEVC) (pp. 1-8). IEEE. <https://doi.org/10.1109/IEVC.2014.7056145>
Poliak, M., Mrnikova, M., Jaskiewicz, M., Jurecki, R. a Kaciakova, B. 2017b. Public transport integration. Communications-Scientific letters of the University of Zilina, 19(2), 127-132.
Poliak, M., Semanová, Š., Mrníková, M., Komačková, L., Šimurková, P., Poliakova, A. a Hernandes, S. 2017a. Financing public transport services from public funds. Transport Problems. <https://doi.org/10.20858/tp.2017.12.4.6>
Poullikkas, A. 2015. Sustainable options for electric vehicle technologies. Renewable and Sustainable Energy Reviews, 41, 1277-1287. <https://doi.org/10.1016/j.rser.2014.09.016>
Ribau, J. P., Silva, C. M. a Sousa, J. M. 2014. Efficiency, cost, and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses. Applied Energy, 129, 320-335. <https://doi.org/10.1016/j.apenergy.2014.05.015 >
Richter, M., Zinser, S. a Kabza, H. 2012. Comparison of eco and time-efficient routing of ICEVs, BEVs, and PHEVs in inner-city traffic. In 2012 IEEE Vehicle Power and Propulsion Conference (pp. 1165-1169). IEEE. <https://doi.org/10.1109/VPPC.2012.6422511>
Riyanto, R., Riyadi, S. A., Nuryakin, C. a Massie, N. W. G. 2019. Estimating the Total Cost of Ownership (TCO) of Electrified Vehicle in Indonesia. In 2019 6th International Conference on Electric Vehicular Technology (ICEVT) (pp. 88-99). IEEE. <https://doi.org/10.1109/ICEVT48285.2019.8994030>
Scarponi, G. E., Vacca, P., Salzano, E., Tugnoli, A., Pastor Ferrer, E. a Cozzani, V. 2019. Report on LPG infrastructure impact at the WUI microscale.
Štatistika v PSPP: Korelačná analýza [Online]. Dostupné z: https://statistikapspp.sk/korelacia/ [prístup: 07.09.2021].
Trolejbusy na Slovensku [Online]. Dostupné z: https://en.ppt-online.org/664967 [prístup: 07.09.2021].
Tzeng, G. H., Lin, C. W. a Opricovic, S. 2005. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy, 33(11), 1373-1383. <https://doi.org/10.1016/j.enpol.2003.12.014>
Vergis, S. a Chen, B. 2015. Comparison of plug-in electric vehicle adoption in the United States: A state by state approach. Research in Transportation Economics, 52, 56-64. <https://doi.org/10.1016/j.retrec.2015.10.003>
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Kristián Čulík, Karol Hrudkay, Vladimíra Štefancová
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2021-11-08
Published 2021-12-30